stringent response
- Editor's Pick Research Article | Molecular Biology and Physiology(p)ppGpp and c-di-AMP Homeostasis Is Controlled by CbpB in Listeria monocytogenes
Bacteria must efficiently maintain homeostasis of essential molecules to survive in the environment. We found that the levels of c-di-AMP and (p)ppGpp, two nucleotide second messengers that are highly conserved throughout the microbial world, coexist in a homeostatic loop in the facultative intracellular pathogen Listeria monocytogenes. Here, we found that cyclic di-...
- Research Article | Host-Microbe BiologySpoT Induces Intracellular Salmonella Virulence Programs in the Phagosome
Pathogenic bacteria experience nutritional challenges during colonization and infection of mammalian hosts. Binding of the alarmone nucleotide guanosine tetraphosphate (ppGpp) to RNA polymerase coordinates metabolic adaptations and virulence gene transcription, increasing the fitness of diverse Gram-positive and Gram-negative bacteria as well as that of actinomycetes. Gammaproteobacteria such as Salmonella synthesize ppGpp by...
- Research Article | Molecular Biology and PhysiologyBacterial Longevity Requires Protein Synthesis and a Stringent Response
We are surrounded by bacteria, but they do not completely dominate our planet despite the ability of many to grow extremely rapidly in the laboratory. This has been interpreted to mean that bacteria in nature are often in a dormant state. We investigated life in growth arrest of Rhodopseudomonas palustris, a proteobacterium that stays alive for months when it is not...
- Research Article | Molecular Biology and PhysiologyThe Stringent Response Inhibits DNA Replication Initiation in E. coli by Modulating Supercoiling of oriC
To survive bouts of starvation, cells must inhibit DNA replication. In bacteria, starvation triggers production of a signaling molecule called ppGpp (guanosine tetraphosphate) that helps reprogram cellular physiology, including inhibiting new rounds of DNA replication. While ppGpp has been known to block replication initiation in Escherichia coli for decades, the...
- Research ArticleSalmonella Reprograms Nucleotide Metabolism in Its Adaptation to Nitrosative Stress
Nitric oxide triggers dramatic drops in nucleoside triphosphates, the building blocks that power DNA replication; RNA transcription; translation; cell division; and the biosynthesis of fatty acids, lipopolysaccharide, and peptidoglycan. Concomitantly, this diatomic gas stimulates a burst of guanosine tetraphosphate. Global changes in nucleotide metabolism may contribute to the potent bacteriostatic activity of nitric oxide. In addition...
- Research ArticleActivation of the Listeria monocytogenes Virulence Program by a Reducing Environment
Intracellular pathogens are responsible for much of the worldwide morbidity and mortality from infectious diseases. These pathogens have evolved various strategies to proliferate within individual cells of the host and avoid the host immune response. Through cellular invasion or the use of specialized secretion machinery, all intracellular pathogens must access the host cell cytosol to establish their replicative niches. Determining how...