KSHV
- Research Article | Host-Microbe BiologyPseudomonas aeruginosa Stimulates Inflammation and Enhances Kaposi’s Sarcoma Herpesvirus-Induced Cell Proliferation and Cellular Transformation through both Lipopolysaccharide and Flagellin
Kaposi’s sarcoma (KS), caused by infection with Kaposi’s sarcoma-associated herpesvirus (KSHV), is one of the most common cancers in AIDS patients. KS is a highly inflammatory tumor, but how KSHV infection induces inflammation remains unclear. We have previously shown that KSHV infection upregulates Toll-like receptor 4 (TLR4), sensitizing cells to lipopolysaccharide (LPS) and...
- Research Article | Host-Microbe BiologyKaposi’s Sarcoma-Associated Herpesvirus Drives a Super-Enhancer-Mediated Survival Gene Expression Program in Primary Effusion Lymphoma
Kaposi’s sarcoma-associated herpesvirus (KSHV) causes the aggressive disease primary effusion lymphoma (PEL). Here, we show that a viral transcription factor (vIRF3) cooperates with the cellular transcription factor IRF4 to control an oncogenic gene expression program in PEL cells. These proteins promote KSHV-mediated B cell transformation by activating the expression of prosurvival genes through super-enhancers. Our report thus...
- Research Article | Host-Microbe BiologyPPP6C Negatively Regulates STING-Dependent Innate Immune Responses
Cytosolic DNA, which usually comes from invading microbes, is a dangerous signal to the host. The cGAS-STING pathway is the major player that detects cytosolic DNA and then evokes the innate immune response. As an adaptor protein, STING plays a central role in controlling activation of the cGAS-STING pathway. Although transient activation of STING is essential to trigger the host defense during pathogen invasion, chronic STING...
- Research Article | Host-Microbe BiologyCRISPR-Cas9 Screening of Kaposi’s Sarcoma-Associated Herpesvirus-Transformed Cells Identifies XPO1 as a Vulnerable Target of Cancer Cells
Using a model of oncogenic virus KSHV-driven cellular transformation of primary cells, we have performed a genome-wide CRISPR-Cas9 screening to identify vulnerable genes of cancer cells. This screening is unique in that this virus-induced oncogenesis model does not depend on any cellular genetic alterations and has matched primary and KSHV-transformed cells, which are not available for similar screenings in other types of cancer. We...
- Minireview | Host-Microbe BiologyGammaherpesvirus RNAs Come Full Circle
After an adaptive immune response is mounted, gammaherpesviruses achieve persistence through the utilization of viral noncoding RNAs to craft a suitable host cell environment in an immunologically transparent manner. While gammaherpesvirus long noncoding RNAs (lncRNAs) and microRNAs have been recognized for some time and have been actively investigated, a recent spate of reports have now identified repertoires of the circular RNA (...
- Research ArticleRepurposing Cytarabine for Treating Primary Effusion Lymphoma by Targeting Kaposi’s Sarcoma-Associated Herpesvirus Latent and Lytic Replications
Primary effusion lymphoma is an aggressive malignancy caused by Kaposi’s sarcoma-associated herpesvirus. The outcome of primary effusion lymphoma is dismal without specific treatment. Through a high-throughput screening of characterized compounds, we identified an FDA-approved compound, cytarabine, as a potent inhibitor of primary effusion lymphoma. We showed that cytarabine induced regression of PEL tumors in a xenograft mouse model....
- Research ArticleA Critical Role of Glutamine and Asparagine γ-Nitrogen in Nucleotide Biosynthesis in Cancer Cells Hijacked by an Oncogenic Virus
We have previously found that Kaposi’s sarcoma-associated herpesvirus (KSHV) can efficiently infect and transform primary mesenchymal stem cells; however, the metabolic pathways supporting the anabolic proliferation of KSHV-transformed cells remain unknown. Glutamine and asparagine are essential for supporting the growth, proliferation, and survival of some cancer cells. In this study, we have found that KSHV accelerates glutamine...