cyanobacteria
- Research Article | Molecular Biology and PhysiologyA Novel Mode of Photoprotection Mediated by a Cysteine Residue in the Chlorophyll Protein IsiA
Cyanobacteria, oxygenic photosynthetic microbes, constantly experience varying light regimes. Light intensities higher than those that saturate the photosynthetic capacity of the organism often lead to redox damage to the photosynthetic apparatus and often cell death.
- Research Article | Molecular Biology and PhysiologyMethylglyoxal Detoxification Revisited: Role of Glutathione Transferase in Model Cyanobacterium Synechocystis sp. Strain PCC 6803
In most organisms, methylglyoxal (MG), a toxic metabolite by-product that causes diabetes in humans, is predominantly detoxified by the glyoxalase enzymes. This process begins with the so-called “spontaneous” conjugation of MG with the cytoprotectant metabolite glutathione (GSH). In this study, we unravel a logical, but as yet unsuspected, link between MG detoxification and a (prokaryotic) representative of the ubiquitous glutathione...
- Research Article | Ecological and Evolutionary ScienceThe Trait Repertoire Enabling Cyanobacteria to Bloom Assessed through Comparative Genomic Complexity and Metatranscriptomics
We pragmatically delineate the trait repertoire that enables organismal niche specialization. We based our approach on the tenet, derived from evolutionary and complex-system considerations, that genomic units that can significantly contribute to fitness in a certain habitat will be comparatively more complex in organisms specialized to that habitat than their genomic homologs found in organisms from other habitats. We tested this in...
- Perspective | Ecological and Evolutionary ScienceThe Complicated and Confusing Ecology of Microcystis Blooms
Blooms of the toxin-producing cyanobacterium Microcystis are increasing globally, leading to the loss of ecosystem services, threats to human health, as well as the deaths of pets and husbandry animals. While nutrient availability is a well-known driver of algal biomass, the factors controlling “who” is present in fresh waters are more complicated. Microcystis possesses multiple strategies to adapt to temperature,...
- Research Article | Molecular Biology and PhysiologyLinking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon
Environmental regulation of photosynthesis in cyanobacteria enhances organismal fitness, light capture, and associated carbon fixation under dynamic conditions. Concentration of carbon dioxide (CO2) near the carbon-fixing enzyme RubisCO occurs via the CO2-concentrating mechanism (CCM). The CCM is also tuned in response to carbon availability, light quality or levels, or nutrient access—cues that also impact...
- Research Article | Applied and Environmental ScienceSynechococcus sp. Strain PCC7002 Uses Sulfide:Quinone Oxidoreductase To Detoxify Exogenous Sulfide and To Convert Endogenous Sulfide to Cellular Sulfane Sulfur
Cyanobacteria are a major force for primary production via oxygenic photosynthesis in the ocean. A marine cyanobacterium, PCC7002, is actively involved in sulfide metabolism. It uses SQR to detoxify exogenous sulfide, enabling it to survive better than its Δsqr mutant in sulfide-rich environments. PCC7002 also uses SQR to oxidize endogenously generated sulfide to S0, which is required for the proper expression of key...
- Research Article | Molecular Biology and PhysiologyThe Integrity of the Cell Wall and Its Remodeling during Heterocyst Differentiation Are Regulated by Phylogenetically Conserved Small RNA Yfr1 in Nostoc sp. Strain PCC 7120
Bacterial small RNAs (sRNAs) are important players affecting the regulation of essentially every aspect of bacterial physiology. The cell wall is a highly dynamic structure that protects bacteria from their fluctuating environment. Cell envelope remodeling is particularly critical for bacteria that undergo differentiation processes, such as spore formation or differentiation of heterocysts. Heterocyst development involves the deposition...
- Editor's Pick Research Article | Ecological and Evolutionary ScienceTiming the Evolutionary Advent of Cyanobacteria and the Later Great Oxidation Event Using Gene Phylogenies of a Sunscreen
The advent of cyanobacteria, with their invention of oxygenic photosynthesis, and the Great Oxidation Event are arguably among the most important events in the evolutionary history of life on Earth. Oxygen is a significant toxicant to all life, but its accumulation in the atmosphere also enabled the successful development and proliferation of many aerobic organisms, especially metazoans. The currently favored dating of the Great...
- Research Article | Applied and Environmental ScienceComparative Genomics of Cyanobacterial Symbionts Reveals Distinct, Specialized Metabolism in Tropical Dysideidae Sponges
Natural products provide the inspiration for most clinical drugs. With the rise in antibiotic resistance, it is imperative to discover new sources of chemical diversity. Bacteria living in symbiosis with marine invertebrates have emerged as an untapped source of natural chemistry. While symbiotic bacteria are often recalcitrant to growth in the lab, advances in metagenomic sequencing and assembly now make it possible to access their...
- Research Article | Molecular Biology and PhysiologyCoordination of Polyploid Chromosome Replication with Cell Size and Growth in a Cyanobacterium
Polyploidy has evolved many times across the kingdom of life. The relationship between cell growth and chromosome replication in bacteria has been studied extensively in monoploid model organisms such as Escherichia coli but not in polyploid organisms. Our study of the polyploid cyanobacterium...