bacteriophages
- Editor's Pick Research Article | Host-Microbe BiologyBacteriophage Adherence to Mucus Mediates Preventive Protection against Pathogenic Bacteria
The mucosal surfaces of animals are habitat for microbes, including viruses. Bacteriophages—viruses that infect bacteria—were shown to be able to bind to mucus. This may result in a symbiotic relationship in which phages find bacterial hosts to infect, protecting the mucus-producing animal from bacterial infections in the process. Here, we studied phage binding on mucus and the effect of mucin on phage-bacterium interactions. The...
- Research Article | Ecological and Evolutionary ScienceResistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure
Globally rising rates of antibiotic resistance have renewed interest in phage therapy where combinations of phages have been successfully used to treat multidrug-resistant infections. To optimize phage therapy, we first need to understand how bacteria evolve resistance against combinations of multiple phages. Here, we use simple laboratory experiments and genome sequencing to show that the timing and order of phage exposure determine...
- Editor's Pick Research Article | Ecological and Evolutionary SciencePseudomonas aeruginosa Interstrain Dynamics and Selection of Hyperbiofilm Mutants during a Chronic Infection
Bacteria adapt to infections by evolving variants that are more fit and persistent. These recalcitrant variants are typically observed in chronic infections. However, it is unclear when and why these variants evolve. To address these questions, we used a porcine chronic wound model to study the evolutionary dynamics of Pseudomonas aeruginosa in a mixed-strain...
- Research Article | Molecular Biology and PhysiologyEvolution of Superinfection Immunity in Cluster A Mycobacteriophages
Many aspects regarding superinfection, immunity, virulence, and the evolution of immune specificities are poorly understood due to the lack of large collections of isolated and sequenced phages with a spectrum of genetic diversity. Using a genetically diverse collection of Cluster A phages, we show that the classical and relatively straightforward patterns of homoimmunity, heteroimmunity, and virulence result from interactions between...
- Editor's Pick Research ArticleEvolution of the U.S. Biological Select Agent Rathayibacter toxicus
Rathayibacter toxicus is a toxin-producing species found in Australia and is often fatal to grazing animals. The threat of introduction of the species into the United States led to its inclusion in the Federal Select Agent Program, which makes R. toxicus a highly regulated species. This work...
- Research ArticleBacteriophage Distributions and Temporal Variability in the Ocean’s Interior
The North Pacific Subtropical Gyre represents one of the largest biomes on the planet, where microbial communities are central mediators of ecosystem dynamics and global biogeochemical cycles. Critical members of these communities are the viruses of marine bacteria, which can alter microbial metabolism and significantly influence their survival and productivity. To better understand these viral assemblages, we conducted genomic analyses...
- Research ArticleBacteriophage Transcytosis Provides a Mechanism To Cross Epithelial Cell Layers
Bacteriophages (phages) are viruses that infect bacteria. They cannot infect eukaryotic cells but can penetrate epithelial cell layers and spread throughout sterile regions of our bodies, including the blood, lymph, organs, and even the brain. Yet how phages cross these eukaryotic cell layers and gain access to the body remains unknown. In this work, epithelial cells were observed to take up and transport phages across the cell,...