antiviral agents
- Commentary | Therapeutics and PreventionAntiviral Drug Discovery To Address the COVID-19 Pandemic
The magnitude of the morbidity and mortality inflicted upon the global population in less than 1 year has driven the inescapable conclusion that the discovery and development of effective antiviral drugs for COVID-19 are urgent and should be prioritized. The antiviral drug discovery programs that emerged for HIV and hepatitis C virus have enabled technology and expertise to accelerate this process for SARS-CoV-2. The description of...
- Research Article | Molecular Biology and PhysiologyGRL-0920, an Indole Chloropyridinyl Ester, Completely Blocks SARS-CoV-2 Infection
Targeting the main protease (Mpro) of SARS-CoV-2, we identified two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, active against SARS-CoV-2, employing RNA-qPCR and immunocytochemistry and show that the two compounds exerted potent activity against SARS-CoV-2. While GRL-0820 and remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred as examined with immunocytochemistry. In contrast, GRL-0920...
- Research Article | Therapeutics and PreventionHijacking the Fusion Complex of Human Parainfluenza Virus as an Antiviral Strategy
Paramyxoviruses, including human parainfluenza virus type 3, are internalized into host cells by fusion between viral and target cell membranes. The receptor binding protein, hemagglutinin-neuraminidase (HN), upon binding to its cell receptor, triggers conformational changes in the fusion protein (F). This action of HN activates F to reach its fusion-competent state. Using small molecules that interact with HN, we can induce the...
- Research Article | Therapeutics and PreventionStrong In Vivo Inhibition of HIV-1 Replication by Nullbasic, a Tat Mutant
HIV-1 infection is effectively controlled by antiviral therapy that inhibits virus replication and reduces viral loads below detectable levels in patients. However, therapy interruption leads to viral rebound due to latently infected cells, which serve as a source of continued viral infection. Interest in strategies leading to a functional cure for HIV-1 infection by long-term or permanent viral suppression is growing. Here, we show...
- Editor's Pick Research Article | Host-Microbe BiologyStable Occupancy of the Crimean-Congo Hemorrhagic Fever Virus-Encoded Deubiquitinase Blocks Viral Infection
Crimean-Congo hemorrhagic fever virus is an important human pathogen with a wide global distribution for which no therapeutic interventions are available. CCHFV encodes a cysteine protease belonging to the ovarian tumor (OTU) family which is involved in host immune suppression. Here we demonstrate that artificially prolonged binding of the OTU to a substrate inhibits virus infection. This provides novel insights into CCHFV OTU function...
- Research Article | Therapeutics and PreventionEarly Steps in Herpes Simplex Virus Infection Blocked by a Proteasome Inhibitor
Viruses usurp host cell functions to advance their replicative agenda. HSV relies on cellular proteasome activity for successful infection. Proteasome inhibitors, such as MG132, block HSV infection at multiple stages of the infectious cycle. Targeting host cell processes for antiviral intervention is an unconventional approach that might limit antiviral resistance. Here we demonstrated that the proteasome inhibitor bortezomib, which is...
- Research ArticleCoronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease
Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following...
- Research ArticleInhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens
A significant proportion of the world’s population is infected with herpes simplex virus. Primary infection and subsequent recurrent reactivation can result in diseases ranging from mild lesions to severe ocular or neurological damage. Herpesviruses are subject to epigenetic regulation that modulates viral gene expression, lytic replication, and latency-reactivation cycles. Thus, epigenetic pharmaceuticals have the potential to alter...