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FIG 3 Participant characteristics outweighed dietary interventions and drove overall microbiome community composition. Continuous traits were fit to the
ordination as vectors using regression, and (A) alpha diversity (P < 0.001), (B) beta diversity (P < 0.001), and (C) age (P < 0.001) were the most influential.

Categorical variables were tested with nonparametric multivariate analysis of variance (PERMANOVA) to determine if variables were clustered significantly

differently, and (D) sex (P < 0.001), (E) ethnicity (P < 0.001), and (F) participant (P < 0.001) were significant. Dashed lines for sex represent 95% confidence

interval from the centroid of the cluster. Polygons connect all of the samples from one participant.

netics in their influence on the microbiome (18). Therefore, we consider ethnicity a
“meta-trait” that incorporates all of these mentioned factors.

Individual traits are correlated with microbiome genera. Correlations between
genera and individual traits were estimated using nonparametric Spearman correlation,
and significance was estimated by permuting (n = 9,999) all four participant samples
to account for nonindependence of samples taken from the same participant. Results
were organized into heat maps with hierarchical clustering. Of the physical character-
istics, the greatest number of significant correlations were with age (years) (11 genera),
body fat (%) (9 genera), and height (cm) (7 genera), while waist (cm) and hip (cm)
measurements had no significant results (Fig. 5). Haemophilus was most significantly
related to age (rho = —0.28, P = 0.0009), and then Bifidobacterium (rho = —0.31,
P = 0.0014), which is known to correlate strongly with age (15, 35). Faecalibacterium
(rho = —0.26, P = 0.007) and Roseburia (rho = —0.22, P = 0.01) were also significant
and found to be characteristic of older people (36), but Akkermansia (rho = 0.28,
P = 0.0028) and Haemophilus are novel associations with age because they have not
been seen previously (15). Height has been observed to correlate with the microbiome
(37), but mechanisms explaining this are unexplored. Percent body fat had many
significant correlations, and the overall pattern was similar to that of age, but it was
disparate from other body measurements like BMI and weight. The microbiome is
known to play a role in obesity (20, 22, 38), but studies rarely report both body fat (%)
and BMI.

Protein source effect on the microbiome was masked by saturated fat level.
Dietary protein source influenced the microbiome, but it was apparent only once data
were analyzed separately for high and low saturated fat intake. Once separated, many
OTUs were determined to be differentially abundant with a greater number of differ-
ences found within the high-saturated-fat group (Table 1). The common number of

November/December 2018 Volume 9 Issue 6 e01604-18

mbio.asm.org 5

1sanb Aq T20z ‘0z Arenuer uo /610 wse olquwy//:dny wody papeojumoq



Lang et al. mBio’

Sex
Female
1e-014 '

- Male

i
>
kel
=
@
<%
IS
<
[0
s
&
o 1e-03 1
3}
<
<
°
c
3
2
<
o 1e-05-1 ﬁ
=
o
s o
o @)
T T T T T T T T T T T T T T T T T T T T T E
o} T () l W T m @ » T o
29 o g ;‘xf 2z 29 = 2 P I szTm2LQ 3 5 >
g 2852 38 2738 288885283 5 S S
$ ¥ 28 3 &3 38 3533 8% 2 28 5 T 8
2 o 2 8 o 2 9 T 92 § v &8 @ 0 F 8 = 9 Q
2 =2 @ 9 3> 5 © T & = X p = o M 7 o
0] [ = Q %) o Q = Q I ] o o c = =
S = o ¢ & ® 8 o 3 [ g 2 5 c = D)
c s & » = S =5 > o = ]
3 8 @ g £ 8 3 o
@ g 3 Q —h
@ @ =
@ = o
3 3
Genus -5
—+
~+
B ©
=~
—_ ) ~~
S Ethnicity 3
j= .
ke) ‘Asmn O
() i o
2 E3 white o
g 1e-02 (%2}
e—024
(2]
: 3
o o
=
3 Q
g =
o o
é 1e-04 4 >
< (@]
o Q
= >
= c
ol ﬁ] g o
o =
————— 77— 7 7T <
w T » T W T M T T
P &L LEFR2LIL2RITIEF 2 N
o} = I ° O 2 & 2 =z @ 3 c I~ P @
= o L 5 X = ®  © = 5 3 g9 & 5 §5 o o
®© » o ¢ o & F 3 X ® 5 F = & T p S o
3 S T g @ § 3 & = 5 ® I S g 53 T 9 -
= g ©» ¢ = 8 5 F T 8 o 3 2 © = g
< T 9 § = 5 ®» 9 9 Q 5 & © o 7 N
[] = = O S » o > [} = = 0= o} o
7] o. c C = 5” o Q 3 @ @ =.
5 & O o S € e 35 F = s N
& = o 5 o 3 =
%] 3 — g
5] O
] S
Genus
«Q
c
FIG 4 Differentially abundant OTUs between sex (A) and ethnicity (B) are displayed at the genus level. Significance was )
determined with DESeq2 and accounted for age, diet, diet order, saturated fat level, and sex or ethnicity. 28

OTUs between all three protein source comparisons within low-saturated-fat (76 OTUs)
and high-saturated-fat (145 OTUs) groups was greater than half of the identified OTUs,
which suggests that these microbes were responding to any change of protein source
rather than a particular dietary protein. Of these common OTUs, 19 were consistent
between the low and high saturated fat levels and were designated “protein-sensitive
OTUs"” because they responded regardless of saturated fat level (Fig. 6). Protein source
has been shown to alter the microbiome composition, and Bacteroides and Sutterella
were two commonly changed taxa between this study and one conducted with rats
(39).

Microbiome diversity influences response to experimental diet. Diversity is an
important characteristic of a microbial community that has been associated with health
status (40) and response to treatment (41). We found a strong negative relationship
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FIG 5 Microbiota are correlated with physical traits. Correlations between genera and traits were
conducted using nonparametric Spearman correlation and organized into heat maps with hierarchical
clustering. P values were determined by permuting by participant, and significant correlations are
designated with asterisks representing P values where *** is <0.001, ** is 0.001 to 0.01, and * is 0.01 to
0.05.

between alpha and beta diversity using a linear mixed model fit by restricted maximum
likelihood where saturated fat level and protein diet were random effects and sex,
ethnicity, and participant were fixed effects (r = 0.88, P = 0.0125) (Fig. 7). Higher alpha
diversity predicted that communities changed less in response to the experimental
diets, which has been observed previously in studies focused on starch and weight loss
(42, 43).

DISCUSSION

The experimental diets had a modest effect on the microbiome, and protein source
was not as influential as saturated fat level. This is consistent with previous studies
demonstrating that microbiota compositions are resistant to short-term interventions
with long-term dietary patterns being the most influential (25, 27). The rapid changes
observed in other studies may have resulted from comparing diets differing starkly in

TABLE 1 Differentially abundant OTUs between protein sources

No. of OTUs
Saturated fat level
Diet comparison All data Low High
Red meat vs nonmeat 3 115 203
White meat vs nonmeat 1 145 198
Red meat vs white meat 0 130 240
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FIG 6 “Protein-sensitive” OTUs were determined to respond to any change in protein source regardless of saturated fat level. Differentially abundant OTUs
between each protein diet were determined with DESeq2 and accounted for age, diet order, saturated fat level, sex, and ethnicity. OTUs that were differentially

abundant in all comparisons of protein source were determined to be “protein sensitive.”

macronutrient ratio and food source (e.g., all plant or all animal) (31, 44). The experi-
mental diets within this study were structured so the macronutrient ratios remained
consistent and the levels created a diet sustainable for weeks. In addition, the focus was
on altering nutrient sources of protein and saturated fat, not the critical fuel resource
of microbial accessible carbohydrates (MACs) that can dramatically influence the
microbiome (8). Due to a maintained macronutrient ratio and focus on nutrients that
are not a central microbial resource, 4 weeks may not have been enough time to
observe the less-direct effects of these dietary changes. In addition, small shifts may not
have been captured by our taxonomic resolution because shifts from fiber were
observed at the species level (45), which is a taxonomic level not well captured with our
methods. This makes the differences that are seen very interesting.

0.4

Beta Diversity
o
w

0.2+

Alpha Diversity (Shannon)

FIG 7 Alpha diversity predicts beta diversity. Linear mixed model using age, sex, ethnicity, saturated fat
level, and protein diet as covariates was significant (> = 0.87, P value = 0.015). Beta diversity was
calculated as the distance between the baseline diet and each experimental diet (three per person) for
each participant.
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Associations with interindividual differences outweighed the effects of the experi-
mental diets. Many variables influenced the microbiome, and this highlights how
sensitive the microbiome is to the accumulation of factors other than diet. In fact, two
large-scale population studies identified 69 and 126 factors relating to interindividual
and health traits that correlated with the microbiome (37, 46). This could help explain
why it is common to see samples from a participant cluster together and for variability
to be greater between individuals rather than within the same individual (9, 47). In
addition, this difference in initial microbiome composition can influence the physio-
logical effect of specific foods (29, 30) and the response to dietary interventions (9, 42).

There are many individual traits that can exert an effect on the microbiome. Sex
differences within the microbiome are a debated topic because there are reports both
supporting and refuting this notion, but it is likely that other variables such as diet, age,
and genotype (14, 34, 48) are masking a real sex effect. When these sources of
variability were controlled for in mice, there was a clear effect of sex on the microbiome
that included diet interactions and was mediated, in part, by sex hormones (14).
Obesity is another trait associated with the microbiome (22) where consistency has
been questioned (38). Obesity is most commonly defined by BMI, but the calculation
does not take into account body composition, and here, it appears body fat (%) has a
stronger relationship with the microbiome. It is possible that the mechanism is related
to levels of systemic inflammation because both body fat and aging (49) have been
associated with increased inflammation, and inflammation has been correlated with
microbiome changes (50-52). In fact, exceptionally healthy old Chinese individuals had
similar microbiomes as healthy young people (53), suggesting that health status, not
age, may be the most important. Aging has been associated with changing taxa, but
diversity appears to be stable within adults (15, 16, 54) until about 80 years of age,
when it starts to decrease (15). The range in this study was 21 to 65 years old, and alpha
diversity did not significantly change. All of these traits appear to be important factors
in shaping the microbiome.

One of the most important qualities of the microbiome is diversity, as it has been
associated with metabolic and physiologic health, inflammation, and even response to
inflammatory bowel disease therapy (55, 56). A common observation is that higher
diversity is more beneficial, which follows the ecological theory that increased diversity
provides greater functional resilience to perturbations. We observed that higher alpha
diversity predicted less change in the microbiome in response to experimental diets.
Similarly, when participants on a resistant starch and weight loss diet were stratified as
responders or nonresponders, the nonresponders had higher diversity (43). In addition,
dietary interventions were successful in increasing low gene richness and clinical
phenotypes (42), further supporting the idea that decreased diversity is a less optimal
state.

Although dietary effects were outweighed by other factors, surprisingly, saturated
fat level had more of an effect than protein source. Bacteria can use protein directly as
a nitrogen source while fat is not considered an energy resource (11). The strongest
argument in support of this observation is that dietary fat requires oxygen to be
metabolized and the gut microbiota is dominated by strict anaerobes (57). However,
bacteria can break down polyunsaturated fatty acids, and intermediates are found in
host tissues (58). It is also known that some fatty acids have antimicrobial properties
(57, 59). While utilizing fat as an energy source may be atypical for bacteria, there may
be other ways in which bacteria can interact with fat that lead to a microbial commu-
nity response.

Levels of saturated fat and monounsaturated fat were both altered in this study,
suggesting that the ratio of these fatty acids rather than the overall fat amount may
affect the microbiome. This is important because in many studies microbial changes
associated with high-fat diets were achieved by concurrently reducing the amount of
carbohydrate/fiber in the diet (60, 61). This reduction in microbial substrate, along with
an indifference to fat profile, may confound the relationship between gut microbiota
and dietary fat. When the amount of fat was held constant but fat sources of palm,
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olive, and safflower oil were compared, community composition changed and increases
in obesogenic traits were associated with high saturated fat (62, 63). It may be that
specific compounds within the fat sources are responsible for these effects because
linoleic acid and oleic acid supplementation reduced body weight and visceral fat mass
along with microbial taxa (64, 65). Other possible influences are fat-soluble vitamins
and polyphenols. In addition, the microbiome has been reported to indirectly affect
host lipid metabolism through short-chain fatty acid production and bile acid regula-
tion (66). The relationship between dietary fat and the microbiome is clearly compli-
cated and still not fully understood.

In conclusion, saturated fat level had a modest effect on the microbiome and
masked a slight effect of dietary protein source. Our findings suggest that fat profile
should be a consideration in reference to the microbiome. The influence of interindi-
vidual differences was greater than that of dietary interventions, but it is likely that
longer periods of intervention would be needed to observe more significant changes.
Moreover, the experimental diets were not focused on the main microbial resource,
carbohydrates. Taken together, our findings provide evidence that shorter-term mod-
erate dietary changes lead to a modest response of the microbiome, and that the
resistance to change increases with microbial diversity.

MATERIALS AND METHODS

Study design. The present study is part of the larger Animal and Plant PROtein and Cardiovascular
Health (APPROACH) study. It was conducted, with IRB approval, to determine the interacting effects of
saturated fat level and protein source on markers of cardiovascular disease risk, using a standardized
baseline diet and six experimental diets. The baseline diet reflected the macronutrient ratio of the
average American diet (67), while the experimental diets had reduced carbohydrate and elevated protein
levels chosen based on previously shown therapeutic benefits of changing macronutrient ratios on
cardiovascular disease risk (68). Results relating cardiovascular disease traits to the microbiome are not
discussed here.

All participants (n = 109) first consumed a 2-week baseline diet and then three experimental diets
in a split-plot design. They were randomly assigned to either low (7%E)- or high (15%E)-saturated-fat
groups (Fig. 1). Fat level differences were created by altering amounts of high-fat dairy and butter, and
only 2% to 3%E came from lean meat or tropical oils when on the nonmeat diet. Within each fat group,
participants consumed, in random order, three isocaloric diets with 12%E derived from different protein
sources: nonmeat (legumes, nuts, grains, isoflavone-free soy products), lean cuts of red meat (11%E beef,
1%E pork), or white meat (8%E chicken, 4%E turkey). The remaining protein source in all diets (13%E)
consisted of eggs, dairy, and vegetable protein. All fish, seafood, and processed meats were excluded
from the diets, and grain-finished beef was used because it comprises 96% of the U.S. beef market (69).
Each experimental diet was consumed for 4 weeks, with a two-week, but up to seven-week, washout
period between diets where participants ate their regular home diets (Fig. 1). Experimental diets were
prepared by the Bionutrition Unit of the University of California, San Francisco Clinical and Translational
Studies Institute using 4-day rotating menus. Dietary compliance was determined during the second
week of the baseline diet and third week of each experimental diet by measuring 24-h urinary nitrogen
and creatinine levels (Quest Diagnostics). Fecal samples were collected at the completion of all four diets
and kept frozen until analyzed. Further details can be found in the work of N. Bergeron, S. Chiu, P. T.
Williams, S. King, and R. M. Krauss (submitted for publication).

Samples were available from 109 participants, and ethnicity was self reported using categories of
white (n = 60), Asian (n = 20), African American (n = 13), Native American (n = 1), Pacific Islander (n =
1), white/Native American (n = 6), white/African American/Native American (n = 2), or unreported (n =
6). For analyses, all reported groups except white, Asian, and African American were combined to form
an “other” category (n = 10).

DNA extraction, library preparation, and sequencing. Microbial DNA extraction and sequencing
were adapted from the methods developed for the NIH-Human Microbiome Project (34). DNA was
extracted from human feces using a MoBio Power Soil DNA extraction kit (MoBio, Carlsbad, CA). DNA of
the V4 hypervariable region of the 16S rRNA gene was amplified with barcoded primers (515f and 806r
[70]) in triplicate using the 5 PRIME HotMasterMix (VWR). Products were quantified with Quant-iT
PicoGreen dsDNA assay kit (Thermo Fisher), and samples were combined in equal amounts (~250 ng per
sample) to be purified with the UltraClean PCR cleanup kit (Mo Bio). Pooled amplicons were sequenced
on the lllumina HiSeq 2500 platform over two lanes to generate single-end reads. Postquality filtering
and removing OTUs representing <0.005% of all OTUs to reduce the sparsity of the data set generated
109,811,869 total reads, with an average of 255,906 reads per sample. Nineteen samples had less than
1,000 reads and were removed, as they were considered unsuccessfully sequenced.

16S microbial data were processed using QIIME version 1.9.1 (71). Barcodes were matched to FASTQ
files and then removed (72). Similar sequences (97%) were combined into operational taxonomic units
(OTU) using open picking (73) with SUMACLUST (74, 75). Representative sequences for each OTU were
aligned using PyNAST (76). The lanemaskPH was used to screen out the hypervariable regions, and OTUs
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were classified with the Greengenes database (77). Samples were rarefied (78, 79) to a depth of 74,457,
which removed three samples and resulted in a total of 410 samples used for analyses.

Statistical analyses. Microbiome communities were visualized using unweighted UniFrac (80) with
principal-coordinate analysis (PCoA) using the phyloseq package (81). Differences among groups were
tested using nonparametric multivariate analysis of variance (PERMANOVA) (82). Continuous variables
were fit to the PCoA ordination by regression using the envfit function in the vegan R package (83), and
P values were determined using 999 permutations. Beta diversity representing microbiome change in
response to the experimental diets was calculated as the distance between the experimental diets and
baseline diet in ordination space. Alpha diversity was assessed using the Shannon diversity index, which
takes into account richness and evenness, that is, if few taxa dominate the community or many taxa are
evenly represented. Analysis of variance (ANOVA) with Tukey post hoc tests to correct for multiple
comparisons was used to detect significant differences in measured traits. Mixed models using a fixed
effect for each participant were included when appropriate. Differential abundance was determined on
nonrarefied data normalized by size factors estimated by the median-of-ratios method using a negative
binomial Wald test that uses standard maximum likelihood estimates for generalized linear model
coefficients. P values were corrected for multiple comparisons using the Benjamini-Hochberg method,
and alpha was set to 0.01 using the DESeq2 R package (84) on nonrarefied data as suggested (78, 79).
Correlations between genera and traits were estimated using nonparametric Spearman correlation, and
P values were estimated by permuting (n = 9,999) all four participant samples to account for noninde-
pendence using the permute R package (85). Samples for correlations (n = 344) were included from only
participants (n = 86) who had all four samples to allow for permutations. All analyses were conducted
inRv33.2.

Data accessibility. Sequencing data have been deposited in the NCBI Sequence Read Archive under
the accession number PRINA498128.
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