








tional gliders did increase significantly (P � 0.05) (Fig. 3A and B; Table S3). For example,
the abundance of 43 dsrA-bearing populations (~5.8% of total dsrA detected by
GeoChip 5), mostly uncultured SRB with a few sequenced species (e.g., Halorhodospira
halophila, Desulfobulbus propionicus, Pelodictyon luteolum, and Vibrio rotiferianus), in-
creased significantly (P � 0.05) (Table S3). In particular, five abundant dsrA probes/gene
variants (gi237846130, gi46308012, gi46307974, gi37726843, and gi46307858) derived
from uncultured SRB were identified as being significantly (P � 0.05) increased as
uranium increased (Fig. 3A). Increased levels of abundance of 21 cytochrome (~4.6%)
and 6 hydrogenase (~7.3%) gene variants were also observed, specifically from well-
known microorganisms like Geobacter, Dechloromonas, Enterobacter, Pseudomonas,
Alcaligenes, Desulfovibrio, Desulfitobacterium, Rhodobacter, Ochrobactrum, and Anaeromyxo-
bacter (Table S3). Also, five abundant cytochrome genes (gi70733596, gi393759946,

FIG 2 Linear relationships between the levels of abundance of specific functional gene families and
log-transformed Uranium (A to D) or nitrate (E to H) concentrations in groundwater, including data for
dsrA, encoding the alpha subunit of sulfite reductase for dissimilatory sulfite reduction (A), sqr, encoding
sulfide-quinone reductase (B), cytochrome genes from well-known organisms, e.g., Geobacter, Anaero-
myxobacter, Dechloromonas, Desulfovibrio, Shewanella, Desulfurobacterium, Desulfobacterium, Rhodobac-
ter, Pseudomonas, Enterobacter, and Ochrobactrum (C), hydrogenase genes from well-known organisms,
e.g., Geobacter, Desulfovibrio, Desulfurobacterium, Desulfobacterium, and Rhodobacter (D), nirK, encoding
nitrite reductase for denitrification (E), nosZ, encoding nitrous oxide reductase for denitrification (F),
napA, encoding nitrate reductase for dissimilatory nitrate reduction (G), and nasA, encoding nitrate
reductase for assimilatory nitrate reduction (H).
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gi157375053, gi394728887, and gi254982574) were significantly (P � 0.05) increased as
uranium concentrations increased in groundwater (Fig. 3B). These stimulated popula-
tions could play important roles in uranium bioremediation at this site.

Key functional populations stimulated in response to a nitrate gradient. We
also found that the abundance of many specific functional genes/populations involved
in N cycling increased significantly (P � 0.05) as nitrate increased (Fig. 3C and D;
Table S4). For example, the abundance of 13 nirK-bearing (4.9%) populations increased
significantly (P � 0.05), with most being uncultured bacteria and a few sequenced
microbes (e.g., Chaetomium, Arthroderma, Nectria, and Pseudomonas); the abundance of
9 napA (6.0%) gene variants for dissimilatory N reduction, derived from Beggiatoa,
Vibrio, Campylobacter, and Dinoroseobacter species, as well as uncultured NRB, also
increased significantly (P � 0.05) as nitrate increased (Table S4). Five abundant nirK
gene variants (gi116204223, gi256723237, gi46409951, gi73762878, and gi50541845)
(Fig. 3C) and five abundant napA gene variants (gi157285650, gi219549420, gi169793654,

FIG 3 Significantly (P � 0.05) positive correlations between the levels of abundance of stimulated
populations and log-transformed uranium (A and B) or nitrate (C and D) concentrations, including data
for dsrA gene variants gi237846130, gi46308012, gi46307974, gi37726843, and gi46307858, derived from
uncultured sulfate-reducing bacteria (A), cytochrome genes gi70733596 from Pseudomonas fluorescens,
gi393759946 from Alcaligenes faecalis, gi157375053 from Shewanella sediminis, gi394728887 from En-
terobacter sp., and gi254982574 from Geobacter sp. (B), nirK gene variants gi116204223 from Chaetomium
globosum, gi256723237 from Nectria haematococca, and gi46409951, gi73762878, and gi50541845 from
uncultured denitrifying bacteria (C), and napA gene variants gi219549420 from Vibrio parahaemolyticus,
gi257458839 from Campylobacter gracilis, gi157913465 from Dinoroseobacter shibae, and gi157285650
and gi169793654 from uncultured nitrate-reducing bacteria (D).
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gi257458839, and gi157913465) increased significantly (P � 0.05) as nitrate increased
(Fig. 3D). In addition, populations stimulated by high concentrations of nitrate were
observed for other N cycling genes, such as amoA, nifH, narG, nirS, norB, nasA, nosZ, and
nrfA (Table S4). These stimulated populations are expected to play important roles in
bioremediation of this nitrate-contaminated site.

Prediction of uranium contamination in groundwater using microbial func-
tional genes. As significant relationships were observed between functional richness,
diversity, and/or populations and uranium concentrations in groundwater, we at-
tempted to predict groundwater contamination by the presence of microbial functional
genes using random forest, a machine learning method (30). First, we selected a total
of 2,361 of the functional genes detected that could predict uranium contamination on
the basis of being involved in S cycling and electron transfer (e.g., dsrA, dsrB, sir,
cytochrome, hydrogenase, and cytochrome P-450 genes). Cross-validation by out-of-
bagging (OOB) estimation of errors for classification of uranium contamination was
28.99%. Second, we selected a subset of 1,521 specific functional genes from the first
set of 2,361 genes for predicting uranium contamination, including 892 dsrA, 536
cytochrome, and 93 hydrogenase genes. OOB estimation of errors was 24.64% for all
three functional gene families and 24.64%, 26.09%, and 28.99% for dsrA, cytochrome,
and hydrogenase genes, respectively, indicating that the best predictor for uranium
contamination was dsrA or a combination of all three gene families, each with an error
rate of 24.64%. Third, we used the significantly changed populations bearing the best
predictor, dsrA (Table S3), and the same results were observed for uranium contami-
nation prediction (Table 1). To further improve our prediction, we used the area under
the receiver operating characteristic curve as the predictive accuracy for random forest
(AUC-RF) (31) to automatically select 50 predictors (Table S5) from the initial 2,361
functional probes related to uranium reduction, which dramatically decreased the OOB
estimate of error rate, from 28.99% to 11.59% (Table 1). These results indicated that

TABLE 1 Performance of the random forest model for predicting environmental contamination by uranium or nitrate in 69 wells at the
OR-IFRC site using microbial functional genes as predictors

Contaminant Predictora

OOB error
rate (%)

No. of wells predicted/no. of wells defined

Background wellsb Contaminated wellsc

Uranium All S cycling and metal-related genes 28.99 47/47 2/22
All dsrA, cytochrome, and hydrogenase genes 24.64 47/47 5/22
All dsrA genes 24.64 47/47 5/22
All cytochrome genes 26.09 46/47 5/22
All hydrogenase genes 28.99 41/47 8/22
Key dsrA, cytochrome, and hydrogenase genes 27.54 45/47 5/22
Key dsrA genes 24.64 45/47 7/22
Key cytochrome genes 39.13 38/47 4/22
Key hydrogenase genes 42.03 33/47 7/22
AUC-RF selection 11.59 47/47 14/22

Nitrate All N cycling genes 36.23 39/44 5/25
All nifH, amoA, narG, nasA, and napA genes 34.78 40/44 5/25
All nifH genes 33.33 41/44 5/25
All amoA genes 27.54 41/44 9/25
All narG genes 36.23 40/44 4/25
All nasA genes 36.23 37/44 7/25
All napA genes 34.78 41/44 4/25
Key nifH, amoA, narG, nasA, and napA genes 30.43 40/44 8/25
Key nifH genes 27.54 41/44 9/25
Key amoA genes 28.99 39/44 10/25
Key narG genes 37.68 37/44 6/25
Key nasA genes 40.58 32/44 9/25
Key napA genes 40.58 32/44 9/25
AUC-RF selection 15.94 42/44 16/25

aKey functional genes detected from each family are listed in Tables S3 and S4 in the supplemental material.
bIn background wells, the concentrations of uranium or nitrate were 30 �g/liter or below or 10 mg/liter or below, respectively.
cIn contaminated wells, the concentrations of uranium or nitrate were higher than 30 �g/liter or 10 mg/liter, respectively.
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microbial functional genes were able to successfully predict groundwater uranium
contamination.

Prediction of nitrate contamination in groundwater using microbial functional
genes. Similarly, we predicted nitrate contamination in groundwater. First, we selected
a total of 5,273 functional genes involved in N cycling and showed that the error rate
for nitrate contamination prediction was 36.23%. Second, we selected a subset of 2,239
specific functional genes from that first set that were involved in N fixation (1,044 nifH
genes), nitrification (173 amoA genes), denitrification (705 narG genes), and assimilatory
(134 nasA genes) and dissimilatory (183 napA genes) N reduction, and the error rates
were 34.79% for all the gene families selected and 33.33%, 27.54%, 36.23%, 36.23%, and
34.78%, respectively, for individual functional gene families, indicating that the best
predictor for nitrate contamination was amoA, with an error rate of 27.54%. Third, we
used the best predictor, amoA, and the significantly changed populations bearing it for
the same prediction, and the error rate for nitrate contamination prediction was 28.99%
(Table 1), which was not an improvement from the previous test. To reduce the
collinearity, we again used AUC-RF (31) to automatically select 54 predictors (Table S6)
from the original 5,273 N cycling genes. This substantially improved our prediction,
decreasing the OOB estimate of error rate to 15.94% (Table 1). These results indicated
that microbial functional genes were able to accurately predict nitrate contamination in
groundwater.

Prediction of ecosystem functioning using microbial functional genes. We also
attempted to select specific microbial functional genes, as well as 16S rRNA genes (for
a comparison), to predict ecosystem functions that may be occurring based on the
concentrations of dissolved gases (e.g., CO2, CH4, and N2O) in the groundwater (Ta-
ble S1). No significant correlations were observed either between the predicted CH4

concentration and the observed CH4 concentration or between the predicted CO2

concentration and the observed CO2 concentration (data not shown). However, when
16S rRNA genes, N cycling genes, all norB or nosZ genes, key norB or nosZ genes, all norB
plus nosZ genes, or key norB plus nosZ genes were used to predict N2O concentrations
in groundwater, significant correlations between the predicted N2O concentration and
the observed N2O concentration were evident, and among those sets of genes or
combinations of genes, key norB plus nosZ genes or key nosZ genes were the best
predictors for N2O concentrations in groundwater based on the r and P values of linear
regressions (Fig. 4). The results suggest that microbial functional genes are potentially
useful and better than 16S rRNA genes for predicting ecosystem functions (e.g., N2O
concentrations in groundwater).

DISCUSSION

Understanding the impacts of contaminants on biological communities and pre-
dicting the effects of those communities on ecosystem functioning are important
topics in ecology and environmental management. In this study, we surveyed the
functional diversity and composition of groundwater microbial communities and their
linkages with environmental contamination or ecosystem functioning at the OR-IFRC
experimental site. Our results showed that the overall functional diversity/richness of
groundwater microbiomes decreased as uranium (but not nitrate) concentrations
increased or at low or high pHs. However, some specific functional genes/populations
involved in uranium and/or nitrate reduction and denitrification were stimulated, and
these functional genes could be used to predict environmental contamination (e.g.,
uranium or nitrate) and ecosystem functioning. In addition, unlike previous studies,
which only had a limited number of samples/wells, this study analyzed 69 microbial
communities from a large range of environmental gradients (e.g., uranium, nitrate, and
pH), providing a more robust picture of the impact of human activities on biodiversity.
The experimental results from this study generally support our hypotheses (with the
exception of the relationship between nitrate and functional diversity).

Our first hypothesis was that the overall functional diversity/richness of groundwa-
ter microbiomes would decrease with an increase in environmental contamination (e.g.,
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uranium or nitrate) or under extreme pH conditions. A previous clone library analysis of
nirS and nirK genes from the same site found that novel nirK and nirS sequences were
present in the contaminated groundwater and that the diversity of both gene families
changed with contaminant (e.g., uranium or nitrate) concentrations (32). Also, a com-
parison of metagenomes from FW106 (a highly contaminated well) and FW301 (a
background well) revealed that long-term exposure to low pHs and high concentra-
tions of uranium, nitrate, and organic solvents resulted in decreased species diversity
and loss of functional diversity (20, 24). Additionally, GeoChip analysis of a landfill
leachate-contaminated aquifer showed that leachate from an unlined landfill impacted
the diversity, composition, structure, and functional potential of groundwater micro-
biomes as a function of groundwater pH, DOC, and concentrations of sulfate and
ammonia (33). In this study, we found that the overall functional diversity of ground-
water microbial communities decreased under uranium contamination or extreme pH
conditions, which is consistent with previous observations in groundwater (20, 32–36),
as well as in the soil environment (37–40). Several possible mechanisms might be
responsible for such a reduction in the functional diversity/richness. First, most micro-
organisms may not have developed efficient strategies for surviving/growing in such
stressed environments, so their abundances would decrease to below detection level or
even to extinction (20, 24). Second, if there are no appropriate mechanisms to deal with
high uranium concentrations in the environment, uranium may accumulate in or be

FIG 4 Random forest predictions of N2O concentrations in groundwater using different sets of genes,
including 16S rRNA genes (A); all N cycling genes (B); all norB and nosZ genes (C); key (significantly
increased/decreased) norB and nosZ genes (D); all norB genes (E); all nosZ genes (F); key norB genes (G);
and key nosZ genes (H). All norB and nosZ key genes are listed in Table S4 in the supplemental material.
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deposited on the cell surface, which could directly or indirectly inhibit specific key
functional genes/enzymes, as well as associated pathways (41), resulting in a decrease
in functional richness/diversity. Third, low pHs might reduce intracellular pH and
disrupt the chemiosmotic gradient (42), impairing cellular metabolism. Fourth, high
concentrations of uranium and nitrate and low pHs coexist in some wells (e.g., FW-021,
FW-106, FW-126, and FW-410), which may cause additive impacts, further reducing the
overall functional diversity/richness. These possibilities may lead to a decreased func-
tional richness/diversity of groundwater microbial communities. However, the func-
tional richness/diversity of certain specific gene families did not decrease significantly
as nitrate concentrations increased. One possible explanation is that most microbes
(e.g., nitrate reducers) might use nitrate or related N compounds (e.g., NO2

�, NO, N2O,
or NH4

�) as electron donors/acceptors and sources of energy and assimilatory N, so
that they were able to cope with such high nitrate concentrations. Indeed, a previous
study indicated that elevated nitrate could stimulate microorganisms, especially those
with diverse metabolic capabilities (43). Therefore, our results generally support the
hypothesis that the overall functional richness/diversity of groundwater microbial
communities decreases as uranium concentrations increase or under extreme pH
conditions in groundwater.

Although the overall functional diversity/richness decreased as uranium concentra-
tions increased or remained unchanged as nitrate concentrations increased, some key
functional genes/populations involved in uranium or nitrate reduction/resistance
would be expected to increase under high concentrations of uranium and nitrate. The
dsrA gene, encoding the alpha subunit of dissimilatory sulfite reductase, an SRB
biomarker indicating the ability to reduce sulfate and heavy metals (e.g., uranium)
(44–47), and cytochrome genes (48, 49) were enriched. Previous studies also indicated
that some of these functional genes/populations were stimulated under conditions of
high concentrations of heavy metals (e.g., uranium and chromate) in this OR-IFRC site
(50–53), the Uranium Mill Tailings Remedial Action site in Rifle, CO (54), and the
chromate-contaminated Hanford site (55), suggesting the important role of these
functions in metal (e.g., uranium and chromate) reduction. As nitrate is an important
nutrient and electron acceptor for microorganisms, adequately high concentrations of
nitrate in groundwater are expected to stimulate N cycling genes and associated
processes. For example, a recent study indicated that elevated nitrate could enrich
functional genes involved in C, N, S, and phosphorus (P) cycling, thus leading to the
potential in situ bioremediation of polybrominated diphenyl ether (PBDE)- and poly-
cyclic aromatic hydrocarbon (PAH)-contaminated sites (43). In the current study, we
found that the abundances of about 5 to 6% dsrA, cytochrome, and N cycling genes
were positively correlated with the uranium or nitrate concentrations. These genes
were largely derived from SRB, NRB, and MRB, particularly those microorganisms with
versatile metabolic capabilities (e.g., Rhodanobacter, Geobacter, Pseudomonas, Alcali-
genes, Desulfovibrio, Desulfitobacterium, Rhodobacter, and Anaeromyxobacter). Some
of these key microorganisms have been isolated from the OR-IFRC site (23, 25–29),
and several key genes have been identified by shotgun metagenome sequencing
(20, 24). The results generally support our second hypothesis, that key functional
genes/populations involved in uranium reduction, nitrate reduction, and denitrifi-
cation could be stimulated under high concentrations of uranium and nitrate. These
significantly increased or decreased functional genes or populations were used to
predict uranium and nitrate contamination and ecosystem functioning in this study,
as they are expected to play important roles in this groundwater system.

Two recent studies compared different machine learning methods, one aimed at
finding predictors of bacterial vaginosis (56) and the other at identifying environmental
sensors in groundwater contamination (22), and both showed that random forest was
a suitable approach for predictive analysis of microbial communities. Another study
showed that 16S rRNA gene sequencing data of human fecal communities were good
predictors of a city’s obesity level using random forest algorithms (57). Also, 16S rRNA
gene sequencing of fecal samples was used to distinguish pediatric patients with
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inflammatory bowel disease (IBD) from patients with similar symptoms (58). At the
OR-IFRC site, a recent study found that 16S rRNA gene sequencing data could be used
to successfully predict most (26 out of 38) of the groundwater geochemical properties,
such as uranium and nitrate concentrations and pHs (22). Although all these studies
used 16S rRNA genes as predictors, it is believed that functional genes may be better
predictors of ecosystem functions. Currently, some challenges remain in the use of
functional genes as predictors. One challenge is to determine which functional genes
or sets of functional genes are appropriate choices for given functions, phenotypes
(e.g., disease), or processes (e.g., CO2 production), and another challenge is to accu-
rately identify or measure a specific phenotype or functional process.

In this study, our results indicated that uranium and nitrate contamination were
accurately predicted, specifically with AUC-RF (31), and we also successfully predicted
dissolved N2O in groundwater. However, several challenges still remain in predicting
other ecosystem functions, such as CO2 and CH4 concentrations in groundwater. First,
only a few wells had relatively high concentrations of CH4 or CO2, while most wells had
undetectable concentrations of these gases in the groundwater. Such a skewed distri-
bution of data may affect our prediction accuracy. Second, the high diversity of
functional genes/populations may present multiple instances of collinearity in the
community, thus compromising our predictions. Indeed, when we used AUC-RF to
reduce collinearity, the prediction error rates decreased dramatically, from approxi-
mately 29% to 12% for uranium contamination and from 36% to 16% for nitrate
contamination. Third, it is hard to identify the specific functional genes responsible for
some general functional processes. For example, groundwater CO2 could be generated
from many C decomposition pathways and other physical or chemical pathways or
consumed by autotrophy and chemical reactions, making it difficult to select specific
genes for predicting this functional process and, thus, limiting the predictive power.
Fourth, the relationship between dissolved gases and functional gene abundance may
be subtle. The concentrations of gases in groundwater may not accurately reflect
ecosystem functioning, or functional gene abundance may not reflect actual activity.
Perhaps due to these challenges, a recent study also showed that adding functional
information did not improve classification accuracy (59). Therefore, to accurately pre-
dict ecosystem functioning, more studies need to be conducted to optimize methods,
select appropriate functional predictors, reduce skewed sample distribution, decrease
multiple incidences of collinearity, and/or increase the reliability of ecosystem func-
tional process data.

Conclusions. Our results indicated that the overall functional richness/diversity
decreased with increased uranium (but not nitrate) concentrations or at low or high
pHs. Some specific functional genes/populations were stimulated under high concen-
trations of uranium or nitrate and could be used to successfully predict uranium and
nitrate contamination and, potentially, ecosystem functioning. This study provides new
insights for our understanding of the impacts of environmental contaminants on the
functional richness/diversity of groundwater microbiomes and demonstrates the pre-
dictive power of microbial functional genes to identify environmental contamination
and ecosystem functioning.

MATERIALS AND METHODS
More detailed descriptions of the site, sampling methods, physical, geochemical and microbiological

measurements, groundwater biomass collection, DNA extraction, and random forest analysis was pro-
vided previously (22).

Site description and sampling. The U.S. Department of Energy’s (DOE) Oak Ridge Integrated Field
Research Challenge (OR-IFRC) site has a 243-acre contaminated area and a 402-acre uncontaminated
background area located within the Bear Creek Valley watershed in Oak Ridge, TN. This site has been
contaminated with radionuclides (e.g., uranium and technetium), nitrate, sulfide, and volatile organic
compounds. The major source of contamination is the former S-3 waste disposal ponds within the Y-12
national security complex, which has been continuously monitored and documented over the past
several decades (25, 60). Further information regarding the plume and sources of contamination can be
found at https://public.ornl.gov/orifc/orfrc1_fieldchallenge.cfm.

Physical, geochemical, and microbiological measurements. In this study, 93 groundwater wells
were carefully selected to cover the maximum geochemical diversity of this site without exhaustively
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sampling all available wells. However, we were only able to obtain enough DNA from 69 wells for
GeoChip analysis (see Table S1 in the supplemental material). Groundwater samples were collected
from the OR-IFRC experimental site between November 2012 and February 2013. A variety of
physical, geochemical, and microbiological properties were measured on site or in the laboratory as
previously described (22); a brief summary follows. (i) Bulk water parameters, including temperature,
pH, dissolved oxygen (DO), conductivity, and redox, were measured at the wellhead using an In-Situ
Troll 9500 sensor (In-Situ, Inc., Fort Collins, CO). (ii) Dissolved gases, including He, H2, N2, O2, CO, CO2,
CH4, and N2O, were measured on an SRI 8610C gas chromatograph with argon carrier gas using a
method derived from EPA RSK-175 and USGS Reston Chlorofluorocarbon Laboratory procedures. (iii)
Dissolved organic carbon (DOC) and inorganic carbon (DIC) concentrations were determined with a
Shimadzu TOC-V CSH analyzer (Tokyo, Japan). (iv) Anions, including bromide, chloride, nitrate,
phosphate, and sulfate, were determined using a Dionex 2100 with an AS9 column and carbonate
eluent. (v) Concentrations of metals (and trace elements) in the groundwater were determined on
an inductively coupled plasma-mass spectrometry (ICP-MS) instrument (Elan 6100) (61). Finally, (vi)
the amounts of bacterial biomass in groundwater samples were determined using the acridine
orange direct count (AODC) method (62).

Groundwater biomass collection, DNA extraction, and template preparation. Microbial biomass
was collected and DNA extracted as described previously (11). Briefly, 4.0 liters of groundwater was
filtered through 0.2-�m filters to collect biomass. Filters containing biomass were placed into 50-ml
Falcon tubes, immediately stored on dry ice, transferred to the laboratory, and stored at �80°C until DNA
extraction. DNA was extracted and purified using a modification of the Miller method (62).

GeoChip hybridization and data preprocessing. The GeoChip 5.0 microarray chip contains 167,044
distinct functional gene probes, covering 395,894 coding sequences (CDS) from ~1,600 functional gene
families involved in microbial carbon (e.g., degradation, methane metabolism, and fixation) and nitrogen
(e.g., nitrification, denitrification, reduction, and fixation) cycling, electron transfer, organic remediation,
secondary metabolism, stress responses, and virulence. To obtain sufficient DNA for microarray analysis,
10 ng of template DNA from each sample was amplified using whole-community genome amplification
(WCGA) (63). After amplification, 2.5 �g of DNA was labeled, resuspended in hybridization buffer, and
hybridized on a GeoChip 5.0 microarray chip with 10% formamide at 67°C for 24 h in an Agilent
microarray hybridization oven (Agilent Technologies, Santa Clara, CA). The array was then washed, dried,
and scanned at 100% laser power at wavelengths of 532 nm and 635 nm. Intensity data were collected
using the Agilent Feature Extraction program. Raw intensity data were uploaded to the Functional Gene
Microarray analysis pipeline (http://ieg2.ou.edu/Agilent) for preprocessing, including normalization and
log transformation.

GeoChip data analysis. The preprocessed GeoChip data and environmental variables were used for
further statistical analyses, including (i) � diversity and evenness indexes of microbial communities as
previously described (16), (ii) linear and nonlinear regressions between measures of functional gene
diversity/abundances of selected genes and geochemical properties by SigmaPlot (Systat Software, Inc.,
San Jose, CA), and (iii) linear regressions between each probe (normalized signal intensity profile across
all samples) and environmental variables and calculations of slopes and R2 and P values using R (64).

Random forest for predicting environmental contamination and ecosystem functioning. Ran-
dom forest was used for classification and regression as it does not require extensive tuning and recent
studies have demonstrated that it is a suitable tool in microbial community analysis (22, 58, 65). This
method included three major steps: feature selection, modeling (classification or regression), and error
rate estimation by out-of-bag (OOB) data.

(i) Feature selection. Different sets of functional genes were selected as features for predicting
environmental (uranium and nitrate) contamination and ecosystem functioning (e.g., N2O), including
related functional gene categories (e.g., all N cycling genes), specific functional gene families (e.g., norB
or nosZ), and key functional genes that were significantly increased or decreased as contamination
increased. For the classification of environmental (uranium and nitrate) contamination, we also used the
receiver operating characteristic curve and the area under the curve (AUC) as the predictive accuracy for
random forest (RF) and then selected the set of features with the highest AUC values, termed AUC-RF
(31), thus reducing the multiple collinearity among features. An AUC of around 0.5 indicates that the
classification is only as good as a random guess, while the classification is perfect if the AUC is 1.0. This
was performed by using the R package AUCRF.

(ii) Modeling. The random forest models were constructed using the R package “randomForest” as
described by Leo Breiman (66). The algorithm is briefly summarized below. First, bootstrap samples
were drawn from the original data n times. Second, for each set of bootstrap samples, an unpruned
classification or regression tree was grown, and at each node, rather than choosing the best split among
all features, we randomly sampled the mtry (number of features randomly sampled as candidates at each
split) of the features and chose the best split among those features. By default, mtry equals one-third the
number of all features. Third, new data were predicted by aggregating the predictions of n trees (i.e.,
majority votes for classification and averages for regression).

(iii) Error rate estimation. The estimate of the error rate was obtained without independent test
data sets. At each bootstrap iteration, the data not included in the bootstrap samples, also known as
out-of-bag (OOB) data, were used for prediction with the tree constructed from the bootstrap samples.
Then, the error rate was calculated by aggregating the OOB predictions to obtain the OOB estimate of
error rate.
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Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02435-17.
FIG S1, TIF file, 0.7 MB.
FIG S2, TIF file, 0.5 MB.
TABLE S1, DOCX file, 0.03 MB.
TABLE S2, DOCX file, 0.01 MB.
TABLE S3, DOCX file, 0.03 MB.
TABLE S4, DOCX file, 0.1 MB.
TABLE S5, DOCX file, 0.02 MB.
TABLE S6, DOCX file, 0.02 MB.
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