








less frequently than mutation. However, the effect of recombination in genetic diver-
sification relative to mutation (r/m) was 1.77, which implies that even though recom-
bination events were approximately twenty-times less frequent than mutation, each
recombination event introduced almost twice as many substitutions as mutations. Each

FIG 2 Phylogenetic inference and population structure of the ST36 clone. (A) ML phylogeny (left) inferred from the SNPs identified through analysis after removal
of the recombining regions identified with ClonalFrameML and distribution of core and accessory genes determined with Roary for each strain (right), with the total
number of genes in the column on the right. Gray circles indicate branches with 100% bootstrap support. (B) Population structure and admixture proportion inferred
by using ADMIXTURE showing the six subpopulations identified within the V. parahaemolyticus ST36 strains (K value of 6). Bar graph indicating the relative ancestry
composition of the data set analyzed, with each color representing one of the genetically differentiated ancestral groups and each vertical colored bar corresponding
to one strain. Although there is a clear correspondence between the subpopulations of ST36 and their spatial-temporal distribution, four genomes from the western
(VpG-11, VpG-7, VpG-8, and VP32) and two from the eastern (VP30 and VP46) United States demonstrated evidence of admixture between the two modern populations
currently existing on the Pacific and Atlantic coasts of the United States, with the fraction of every color in the bar reflecting the proportion of the genome derived
from the group represented by that particular color. State name abbreviations used in strain codes: CA, California; CT, Connecticut; FL, Florida; GA, Georgia; MA,
Massachusetts; MD, Maryland; MO, Missouri; NJ, New Jersey; NY, New York; OR, Oregon; VA, Virginia; WA, Washington.
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recombination event introduced, on average, 31 substitutions (��). The analysis re-
vealed a mutation rate twice as high in chromosome I as in chromosome II, indicating
less of an impact of recombination on chromosome II (Table S3). Additionally, the
impact of recombination on each specific node and strain was evaluated by using
Gubbins; the analysis revealed variable r/m rates across the phylogenetic tree, with
values ranging from 1.5 in the Spanish group to around 25 for modern strains isolated
from the northeast coast of the United States (Fig. S2). This supports recombination as
a fundamental force driving the emergence of the modern ST36 populations in the
United States, with an r/m rate of 13.

ClonalFrameML identified 20 recombination events on all branches of the clonal
genealogy (Table S4; Fig. S1), 16 in chromosome I, and the remaining 4 in chromosome
II. Seven imports of long regions ranging from 1.1 to 10 kb were identified on four
major nodes of the tree, demonstrating the central contribution of recombination to
any of the major diversification processes within the group. Nine of the recombination
regions (seven of them in a single strain, CDC_121898) were under 100 bp in length,
had no similarities to any sequences in the NCBI nr database, and were not subjected
to further analysis. For the remaining 11 insertion sequences with BLAST hits, one
region of strain CDC_121898 (367 bp) provided the highest sequence similarity to Vibrio
vulnificus (94.60% identical sites). All other sequences had the highest percentage of
sites identical to those of V. parahaemolyticus; most of the similarities were relatively
strong (�97% identical sites).

The first hot spot was found in the first node of diversification (node 1 in Fig. 3; node

FIG 3 Bayesian analysis of the different lineages of V. parahaemolyticus ST36. (A) Markov chain Monte Carlo tree showing the phylogeographic reconstruction
throughout the course of the transcontinental expansion of this clone estimated with BEAST (Bayesian skyline demographic model and uncorrelated lognormal
molecular clock) analysis with prior temporal information from the date of isolation from the 349 SNPs identified in the core genome of the ST36 strains after
the removal of recombination. The color gradient of the branches represents the median substitution rates, and the yellow boxes represent recombination
events. (B) Bayesian skyline plot estimated with BEAST showing the demographic changes measured as effective population size (Ne) per generation time. State
name abbreviations used in strain codes: CA, California; CT, Connecticut; FL, Florida; GA, Georgia; MA, Massachusetts; MD, Maryland; MO, Missouri; NJ, New
Jersey; NY, New York; OR, Oregon; VA, Virginia; WA, Washington.
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92 in Table S4) and spanned positions 666392 to 668923 of chromosome I (2,531 bp).
This region corresponded to three genes (Table S4) with 98.5% of the sites identical to
those of V. parahaemolyticus UCM-V493 (19). The second hot spot, spanning positions
3816980 to 3819912 (2,932 bp) of chromosome II, was found exclusively in the strains
identified in Spain, (node 2 in Fig. 3; node 83 in Table S4) and corresponded to genes
involved in the ABC transporter substrate-binding protein (Table S4). A total of 98.9%
of its sites are identical to those of V. parahaemolyticus RIMD 2210633 (20). The third hot
spot, spanning positions 3445960 to 3456047 of chromosome II, was identified in the
node driving the modern populations of the ST36 isolates prevailing on the Atlantic and
Pacific coasts of the United States (node 3 in Fig. 3; node 83 in Table S4); this represented
the largest region identified by ClonalFrameML (10,087 bp), with 15 proteins and the
highest BLAST similarity to V. parahaemolyticus O1:K33 strain CDC_K4557 (98.8% identical).

Two other large regions of 8,862 and 4,692 bp, on chromosome I, were identified in the
node of divergence of strains Vp_30 and Vp_46, which were isolated from cases in
Maryland in 2013 (node 5 in Fig. 3; node 49 in Table S4). The first one, spanning positions
2070377 to 2079239, was 98.7% identical to both V. parahaemolyticus O1:K33 strain
CDC_K4557 and strain FORC_006 (21), with slight differences in the six coding regions and
gene products. The second large region, spanning positions 2756482 to 2761174, was
99.3% identical to V. parahaemolyticus O1:K33 strain CDC_K4557, with the presence of
putative proteins that have molecular functions related to DNA binding (peptidases),
endonuclease, metalloendopeptidase, and N(6)-L-threonylcarbamoyladenine synthase ac-
tivities (Tables S4).

A total of 11 hot spots were identified in strain CDC-121898_2012_NJ, which was
isolated in New Jersey in 2012. No BLAST results were available for seven recombination
regions. One region was identified as a type 1 secretion system-secreted agglutinin
(RTX) 97% identical to V. parahaemolyticus UCM-V493 (19). Although this insertion was
only 134 bp in length, covering a small proportion of the coding region (1,116 bp),
functional annotations reveal that this protein was involved in cell communication.
Three recombination regions were identified as hypothetical proteins, although one
region was most similar to V. vulnificus (94.60% of sites identical; Table S4). Finally, two
regions were identified in strain VP32_2013_MD, one 97.90% identical to V. parahae-
molyticus O1:K33 strain CDC_K4557 and a second 97.9 to 98.6% identical to V. parah-
aemolyticus RIMD 2210633 (Table S4).

Phylogenetic inference. Preliminary maximum-likelihood (ML) phylogenetic recon-

struction of the core genome with RAxML provided strong evidence of recombination,
as evidenced by the relative lengths of branches in the reconstructed phylogeny
(Fig. S3). As expected, the accuracy of the tree’s topology was impacted by recombi-
nation of ST36 observed as distortion in the lengths of the phylogenetic tree but not
by alteration of branch topology. The topology of the tree inferred by using complete
core genomes resulted in long internal branches and shorter terminal branches with
the reverse situation when the recombination was removed. This situation was partic-
ularly relevant where large importations resulted in an upwardly biased inference of
branch length. As distortion of branch length has been widely recognized as a likely
contributor to inaccurate inference of demography and molecular clocks when phylo-
genetic methods are applied to recombining populations (22), only core genomic
regions with recombining sites removed were used for any further analysis. A total of
732 SNPs associated with recombination events were identified, which contributed to
68% of the variation identified in both chromosomes (4,436,654 bp) (Table 2). The
remaining 349 SNPs were detected in nonrecombining regions and ultimately used for
phylogenetic inference.

Branch topology was robustly reconstructed from whole genomes by ML phyloge-
netic methods and, even in the presence of recombination, showed a solid grouping
with the existence of three groups that were clearly differentiated according to the
origin of the isolates: old PNW, modern United States, and Spain (Fig. 2). Strains isolated
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from the Pacific Northwest before 2000 were clearly differentiated from the rest of the
strains in a single group from which the Spain and modern U.S. strains diverged.

Population structure. To assess the level of genetic differentiation between the
subpopulations in each geographic region, we investigated the population structure and
ancestry relationship by using different numbers of populations (using K values ranging
from 1 to 9) with ADMIXTURE (Fig. 2). A K value of 6 showed the lowest cross-validation
error and was finally selected for the analysis. Outputs from ADMIXTURE identified six
subpopulations within the V. parahaemolyticus ST36 strains with a clear correspondence
between the subpopulations and their spatial-temporal distribution. Strains identified in
the Pacific Northwest before 2000 were split into two different groups, and the modern U.S.
population was clearly segregated into two subpopulations that closely corresponded to
their origins (Pacific and Atlantic regions). Four strains from the Pacific region (VpG-11,
VpG-7, VpG-8, and VP32) and two from the Atlantic region (VP30 and VP46) showed
evidence of admixture between the two modern populations in the United States, with
fractions of their genome belonging to each subpopulation.

Genome size, gene number, and genetic diversity within subpopulations. A
trend toward gene number reduction was observed over the course of evolution.
Larger genomes and higher gene numbers were observed in strains from the old
subpopulation P2 (a median of 5,149,046 bp and 4,665 CDS) identified in the Pacific
Northwest in the 1990s, whereas shorter genomes were observed in modern popula-
tions from the United States (Fig. S4). The effective reduction was observed in sub-
populations 5 and 6 (Fig. S4), comprising the modern U.S. strains, and the two
subpopulations had similar genome sizes and gene numbers (a median of 5,108,489 bp
and 4,597 CDS and a median of 5,111,360 bp and 4,596 CDS, respectively). Conversely,
recent strains from Spain retained the ancestral trait of large genomes observed in the
extinct PNW group, which tightens the link between those populations and bolstered
the notion that the genome reduction arose only in the course of evolution of modern
ST36 populations in the United States.

Genetic diversity estimated for each of the V. parahaemolyticus ST36 subpopulations
identified by ADMIXTURE (Fig. S5) showed variable levels of nucleotide diversity within
each subpopulation, with the higher values in the dominant old (P2) and modern (P5)
PNW subpopulations. The lowest genetic diversity was in the Spain and modern U.S.
populations. These low levels of genetic variation may have occurred as a result of the
founder effect after a recent introduction into these regions. However, while the
diversity of the subpopulation of Spain remained extremely low, the subpopulation
from the northeast of the United States showed rapid diversification and effective
divergence from the original group. Examination of the environmental conditions on
the U.S. east coast revealed a warming trend over the period of the study and
identification of a step change with one regime shift in 2010 that resulted in an abrupt
sea surface temperature (SST) change of 2.2°C (from 13.8 to 16°C) that corresponded to
the radiation of ST36 in the U.S. northeast (Fig. 4).

Molecular clock, evolutionary rates, and phylodynamics of transmission. Phy-
logenetic trees inferred with sequences of the core genome were analyzed to identify

TABLE 2 SNPs identified across the two chromosomes of V. parahaemolyticus ST36 strains

Genome
portion

Total
no. of
SNPs

No. of SNPs in:

Chromosome I Chromosome II

All Recombining Nonrecombining All Recombining Nonrecombining

Core genome 1,081 725 501 224 356 231 125
CDS 867 571 390 181 296 198 98
Synonymous SNPs 538 353 303 50 185 154 31
Missense SNPs 310 210 86 124 100 41 59
Start lost SNPs 1 1 0 1 0 0 0
Stop lost SNPs 3 2 0 2 1 1 0
Stop gained SNPs 15 5 1 4 10 2 8
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trees that maximized the correlation of root-to-tip distance with the sampling date. The
best fit was identified for sequence data from the core genome, with a correlation
coefficient (r) of 0.86 and a variance (R2) of 0.74 for the dated tips. The slope of the
regression for the core genome, a proxy for the rate of evolution, was estimated as
4.93E-7 mutations per site per year, which agreed with previously published data for
Vibrio cholerae (23) and is equivalent to 3.3 mutations per genome per year (24). The
estimate of the time of the most recent common ancestor (TMRCA) of the ST36 strains
analyzed (x intercept) was 1980.

A Bayesian analysis of the core genome sequences was then performed with BEAST
by using strict and relaxed molecular clock analyses to reconstruct the evolution and
phylogeography of the ST36 clone throughout the course of its geographic expansion.
After running different combinations of demographic and molecular clock models, a
Bayesian skyline demographic model and uncorrelated lognormal molecular clock were
finally selected as the best demographic model for this data set according to path
sampling (PS)/stepping-stone sampling (SS) values (Table S5).

The TMRCA of the group was around 1983 (Table S5) and rapidly diverged in two
groups that composed the old PNW lineage that was the sole population belonging to
this group in the Pacific Northwest region until the middle of the 1990s (Fig. 3). By 1995,
a first diversification event occurred, driving the group detected in Spain in 2012 and
then the emergence of the modern U.S. lineage, which completely replaced the old
PNW lineage (Fig. 3). Strains belonging to the old PNW lineage were not identified after
2000, with the exception of the related strains from Spain 12 years later. The ST36
populations prevailing today in the United States diverged from a common ancestor by
2000 and quickly evolved into the modern lineages prevalent today on the Pacific and
Atlantic coasts of the United States; this group showed very active diversification, with
the emergence of a substantial number of genetic variants in only 3 years. All of the
major diversification events, emergence of new lineages, and lineage replacement of
the different groups were concurrent with frequent homologous recombination iden-
tified by ClonalFrameML (Fig. 3).

FIG 4 Sea surface temperature (SST) trend estimated by using daily SST data from the Chesapeake Bay over the study period. Analysis
of mean SST records shows the existence of a step change rather than a linear pattern with one regime shift over this period in 2010
resulting in abrupt changes in SST with a warming of 2.2°C (from 13.8 to 16°C) in close correspondence to the transition in the
epidemiological pattern of V. parahaemolyticus infections along the Atlantic coast of the United States with an increase in the number
of cases reported to the Cholera and Other Vibrio Illness Surveillance (COVIS) system (U.S. CDC) and the parallel to the process of radiation
and diversification of the ST36 population in the region.

Evolution of V. parahaemolyticus ST36 ®

November/December 2017 Volume 8 Issue 6 e01425-17 mbio.asm.org 9

 on M
ay 7, 2021 by guest

http://m
bio.asm

.org/
D

ow
nloaded from

 

http://mbio.asm.org
http://mbio.asm.org/


Despite the active dynamics within the ST36 group, the effective population size
inferred by BEAST showed an almost constant value throughout the period, with the
exception of a slight rise after 2010, concurring with the emergence and diversification
of numerous strains in both the Pacific Northwest and northeast of the United States
(Fig. 3B). The mean evolutionary rate in the core genome of the ST36 population
estimated with BEAST was 4.407E-7 nucleotide substitutions per site per year with a
95% highest posterior density interval of 2.332E-7, 6.128E-7. The mean coefficient of
variation among branch rates was 0.6156, with evolutionary rates ranging from
2.028E-7 to 6.853E-7 nucleotide substitutions per site per year (Fig. 3), which resulted
in 0.87 to 3.84 mutations per genome per year. A local clock model analysis with BEAST
was then performed to investigate the evolutionary rates within all of the ST36 lineages
identified by ADMIXTURE. A fixed local clock under a demographic model of constant
population size was used, revealing a substantial variation in the evolutionary rate
between the different lineages (Fig. S5). The highest mean rates were identified in P2
from the old PNW population (5.14E-7) and the group from Spain (4.83E-7), whereas the
modern populations from the United States showed lower mutation rates, with mean
rates of 2.56E-7 and 3.31E-7 in P5 (PNW) and P6 (Atlantic), respectively. The lowest rate
was found in the oldest population from the Pacific Northwest (P1), with a mean rate
of 1.91E-7 in this group.

A Bayesian phylogeographic reconstruction incorporating a discrete model of
spatial-temporal diffusion was used to visualize the phylodynamics of transmission
between geographic locations with SPREAD (Fig. 5). The map showed several waves of
dissemination of the old PNW strains in the 1990s across the United States with
different events of transference between the Pacific and Atlantic coasts of the United
States. However, the introduction of the ST36 clone to the U.S. Atlantic coast was not
successful until the emergence of the modern U.S. ST36 lineage (after 2000) when, after
several introductory events, it became resident in the area. Once introduced into the
region, the modern U.S. ST36 lineage initiated a process of differentiation and evolved,
originating a new lineage unique to this area, which has shown a very active process
of diversification over recent years. The group identified in Spain in 2012 diverged from
the old PNW population in the late 1990s and from that point was not reported until
its sudden emergence in the course of the 2012 Spanish outbreak.

DISCUSSION

The number of reported cases of V. parahaemolyticus infection has increased
steadily over the previous 2 decades as a result of expansion on a global scale (10, 25).
In addition to the environmental factors driving this expansion, the emergence and
transcontinental dissemination of some particular genetic variants of V. parahaemolyti-

1995                  2000                  2005                  2010
Year

FIG 5 Spatial phylogenetic reconstruction of V. parahaemolyticus ST36 evolutionary dynamics inferred
with SPREAD. A BEAST Bayesian phylogeographic reconstruction incorporating discrete spatial-temporal
diffusion was used to visualize the phylodynamics of transmission between the original regions of
emergence of this clone (PNW) and the geographic locations where different lineages were detected
over the course of the expansion.
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cus are contributing to this process (15, 17, 26–28). Classical typing techniques applied
to the investigation of outbreaks (initially repetitive element PCR and pulsed-field gel
electrophoresis and later multilocus sequence typing [MLST]) provided insights into the
potential sources and origins of these new variants, documenting the first connections
between populations implicated in outbreaks across large geographic distances (11, 12,
29–31). This situation was particularly relevant for understanding the expansion of
V. parahaemolyticus caused by the O3:K6 pandemic clone (11, 32). The application of
whole-genome sequencing for the study of pathogenic V. parahaemolyticus popula-
tions was crucial to determine that the pandemic clone was not the only group that
underwent transoceanic dispersal. Also, almost all of the major V. parahaemolyticus
outbreaks identified in Peru and Chile over the last 25 years had been associated with
the introduction of new genetic variants typically originating in Asia (33).

Following this precedent, we used genome-wide analysis to investigate a more
recent instance of transcontinental spreading of a highly pathogenic V. parahaemolyti-
cus group, ST36. This group, primarily identified by MLST (12), was initially reported only
from the Pacific Northwest. Over the last 6 years, its detection along the northeast coast
of the United States has been associated with a rise in the number of cases in the region
(8). In addition, ST36 was identified for the first, and only, time outside North America
in the northwest of Spain, where it caused a large outbreak in 2012 (15, 17). The
subsequent emergence of this clone in Europe triggered concern about the potential
implications of the transcontinental spreading of a second V. parahaemolyticus strain
and the opportunities for a new pandemic expansion. Furthermore, recent studies have
suggested the existence of a new population of ST36 prevailing among illnesses in the
northeast of the United States (8, 34), which have introduced an additional level of
uncertainty about the evolutionary history of this group.

The present study provided an exceptional opportunity to investigate the evolution
of V. parahaemolyticus populations in the course of epidemic expansion. The distribu-
tion of the ancestral lineages of ST36 was restricted to the Pacific Northwest, and there
is no record of possible introductions to any other region. It was not until the
emergence of the modern lineage of this clone by 1995 that it showed effective
dispersal, particularly after 2000. This modern lineage from the Pacific Northwest was
repeatedly introduced into the east coast of the United States until it became endemic
to the area by 2008, when it initiated a differentiation process leading to the emer-
gence of the modern U.S. northeast population, which was responsible for large
outbreaks of illness from 2013 onward. Our results identified recombination as the
major source of genomic variation with a critical contribution to the major processes of
diversification within the ST36 group and clear implications in the evolution of the
modern lineages in Spain and the United States. In particular, recombination was of
crucial importance in the emergence and diversification of the modern populations in
the United States. Homologous recombination has been previously identified as a
major evolutionary driver in V. parahaemolyticus, with a high level of recombination in
environmental strains (r/m � 39.8) (18) and more moderate levels in disease-related
populations (12). Here we demonstrated that most of the genetic divergence within
this ST36 clonal population occurred by recombination, which introduced almost twice
as many substitutions as mutations. Furthermore, a fine-tuned analysis of recombina-
tion rates for each node revealed that recombination played a fundamental role in the
evolution of the modern lineages, reaching r/m rates of 13 (overall) and around 25 in
particular subpopulations undergoing high diversification. These data stress the critical
importance of recombination not only as a source of variation among the highly diverse
environmental populations but also within the major clonal populations that emerged
from them (12) as a major driver of the emergence of new pathogenic variants within
the population.

Another relevant aspect of the evolution of this clone was the diversity in the
mutation rates found across lineages. The highest evolutionary rate was found in the
old PNW lineage, which also showed a higher level of diversity and the largest genomes
among the strains analyzed. These particular characteristics were uniquely retained by
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the strains from Spain, which tighten the links between these populations. Moreover,
the present study provided a unique perspective on the evolutionary changes that
occurred within a single population of V. parahaemolyticus in the extremely infrequent
process of transition from a locally adapted clone to an epidemic clone undergoing a
transcontinental pandemic expansion event. The modern populations from the United
States, both western and eastern lineages, showed lower evolutionary rates and smaller
genomes than their ancestral lineages, where almost all of the processes of diversifi-
cation and evolution were driven by recombination. Although this needs to be exam-
ined in further detail, a first analysis suggests that the gene number reduction and
lower mutation rate could be associated with a more specialized lifestyle as a result of
niche adaptation. Genome reduction has been observed in many bacterial lineages in
their process of specialization to new environments (35). This pattern of genome
shrinkage has been recently documented in other free-living marine organisms, such as
Prochlorococcus (36), which has undergone a genome reduction as a result of adapta-
tion to the environment. We assume that a similar process may occur in the modern
lineage of ST36 evolving through genome reduction resulting from specialization to
narrow ecologic niches, limiting its versatility and survival under changing conditions.
In terms of colonization, a highly specialized population may lead to a higher rate of
survival over the dispersal and also a higher rate of success in the introduction into new
areas. Recent experimental observations have revealed a link between genome reduc-
tion and a growth rate decrease in bacteria (37). Similar circumstances may have
occurred over the evolution of ST36, where multiple genomic deletions may lead to
decreases in the growth rate of modern lineages of this clone, reducing the mutation
rate because of a lower number of cell divisions. Although the ecologic implications of
this evolutionary pattern need to be explored further, it would be important to analyze
other V. parahaemolyticus clones undergoing similar processes of geographic expan-
sion to assess whether this is a common strategy in the evolution of major epidemic
clones. Finally, the exceptional warming trend and regime shift (from 13.8 to 16°C)
identified in the northeast region of the United States coinciding with the expansion of
the ST36 populations in the area (Fig. 4) may be the definitive factors contributing to
the adaptation of these populations and fostering the growth of populations and
interactions between them.

V. parahaemolyticus infections are currently undergoing a process of geographic
expansion, reaching new regions and typically associated with the introduction of
strains originated from a remote area. Despite numerous studies reporting these
particular patterns of spreading (e.g., reference 5), little is known about the mechanisms
and biological strategies used by this organism over the process of dispersal. The
release of ballast water transported by cargo ships has been identified as one of the
potential vehicles of dispersal and sources of introduction of foreign Vibrio strains (38)
and has been associated with outbreaks occurring in areas in close proximity to
important international ports (e.g., references 39 and 40). Movement of oceanic waters
was also documented as a mechanism of dispersal in some instances where the
emergence and onset of infections correlated with the intrusion of warm oceanic
waters into the region (6, 32). The decrease in the extent of sea ice observed in the
Arctic over the last 2 decades has potentially activated a new route for ship traffic
through the Bering Strait, allowing an effective connection between the west and east
coasts of the United States and the potential dispersal of Vibrio populations. In a similar
context, the melting of Arctic sea ice is removing the physical boundaries between the
Pacific and Atlantic Oceans, opening a natural route for the migration of plankton
species between both coasts of North America documented over recent years (41, 42).
Without ruling out these two alternatives, it seems unlikely that these natural processes
could have provided the opportunity for recurrent introductions of ST36 populations
on the east coast of the United States. Furthermore, the presence of ST36 strains in the
northwest of Spain represents an additional obstacle to the identification of a single
mechanism for the dispersal of this clone. As an additional alternative, the global trade
of shellfish may have also been a contributor to the dispersal of V. parahaemolyticus
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populations. Recent genetic studies tracking the global distribution and introduction of
Manila clams in Europe have identified the origin of clam populations introduced into
the northwest of Spain in the Pacific coast of Canada with frequent importations of
clams from British Columbia in Canada over the end of the 1990s and the beginning of
the 2000s (43, 44).

Fine-resolution genome-wide analysis of ST36 strains over the course of geographic
expansion has facilitated a better understanding of the evolution of this clone over the
process of dispersal and introduction in areas of the United States and Spain. A similar
approach applied to the study of other clonal groups undergoing similar processes of
cross-continental expansion could help to assess whether the evolutionary patterns
identified here are shared by other pathogenic V. parahaemolyticus strains in their
transition from local distribution to the status of an epidemic clone with a global
impact. Furthermore, a more extensive analysis combining disciplines such as evolu-
tion, climate science, and oceanography will provide new insights into the complex
interactions between these populations and the variable ecologic conditions of their
surrounding environments over the process of diversification, aspects that are critical to
an understanding of the basis of the mechanisms driving the evolution of novel
pathogenic clones and the initiation of geographic expansion and epidemic radiation.

MATERIALS AND METHODS
Bacterial strains and DNA extraction. The 44 V. parahaemolyticus strains sequenced in this study

are listed in Table S1. Data from four additional ST36 strains (10296, 12310, 3256, and 10329) previously
sequenced were retrieved from NCBI for use in the genomic comparison (Table S1). These 48 strains were
selected on the basis of geography (representing both the Pacific and Atlantic coasts of the United
States) and association with sporadic illnesses and outbreaks. Six of the ST36 strains (G25, G30, G31, G37,
G36, and G35) represent the single outbreak in Galicia (northwest of Spain) in 2012 (17).

All 44 strains sequenced in this study were retrieved from storage (�80°C freezer), transferred to
Luria-Bertani (LB) medium with 3% NaCl, and incubated at 37°C with shaking at 250 rpm. Genomic DNA
was extracted from overnight cultures with the DNeasy Blood and Tissue kit (Qiagen, Valencia, CA).

Genome sequencing. The genomes of 43 strains were sequenced by MiSeq (Illumina) with a
minimum coverage of 40� to 120�. Libraries were prepared with the Nextera XT DNA sample
preparation kit (Illumina). One isolate was sequenced on the Pacific Biosciences (PacBio) RS II platform by
the Institute for Genome Sciences, University of Maryland School of Medicine (Baltimore, MD). The
continuous long-read data were de novo assembled by the PacBio hierarchical genome assembly process
(HGAP version 2.0) by using default parameters. The assembled sequences were annotated by using the
NCBI Prokaryotic Genome Automatic Annotation Pipeline (45) and subsequently deposited at DDBJ/
EMBL/GenBank. The closed genome sequence of strain 10239 was sequenced with 100� coverage.

Sequence processing, genome assembly, and core genome. Reads were quality trimmed with
Trimmomatic v0.32 (46). The first 20 bases were removed from each read and a 4-base-wide sliding
window was used to cut when the average Phred quality score per base was �15. Reads of �50 bp were
removed from the data set. Draft genomes were assembled de novo for each strain with the A5-miseq
pipeline v20140604 (47) and annotated with Prokka v1.11 (48). The core genome was produced with
Harvest v1.0.1 (49) by using the ST36 (strain 10329; PacBio) genome as the reference. Sites with gaps in
the multiple-genome alignment of the ST36 strains were removed with trimAl v1.4 (50). The core genome
of the reference strain was annotated with Prokka v1.11 (48), and the coordinates of the predicted coding
regions were used to extract the corresponding regions from the core genome of all other strains. A core
gene alignment was created for each strain by concatenating all of the predicted genes.

Pangenome analysis. Before running the pangenome analysis, contamination in the genomes was
assessed with acdc (51). Genomes with unusual gene content or genome size identified during the
pangenome analysis and suspected of possible contamination were analyzed to identify contamination
and remove any suspected instances where contaminant sequences were identified. Of all the genomes,
only two had an unusual genome size or unusual gene content (VP-143A and Vp-G9), and contaminant
sequences were identified and filtered out. Pangenome analysis was carried out with Roary (52). A plot
summarizing the core and accessory genes was produced with the roary2svg.pl script.

SNP calling and phylogenetic inference. SNPs were called with Harvest v1.0.1 (49) and annotated
with SnpEff (53). For each chromosome, SNPs in recombining, nonrecombining, and coding regions were
determined and SNP frequencies were plotted across both chromosomes. Phylogenetic inference by ML
was performed on both the core genome and core gene data sets with RAxML v8.1.15 (54) and the
GTRGAMMA model (1,000 bootstrap replicates). Subsequent searches for the best trees were conducted
by using the GTRCAT model approximation.

Recombination testing. Recombination analysis of the core genome data set was performed with
ClonalFrameML (22) and by using the best ML tree produced by RAxML as the starting tree. Clonal-
FrameML estimated the ratio of recombination to mutation rates (R/�), the mean length of recombina-
tion events (�), and the average distance between events (�). Identified recombining regions were
removed from the core genome data set with BEDTools (55) to create a nonrecombining core genome
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data set. Similarly, all genes that were part of recombining regions were discarded from the core genes,
creating a nonrecombining core gene data set. To confirm the results obtained by ClonalFrameML and
explore the r/m rate for each node and strain, we used Gubbins (56), which identifies loci containing high
densities of base substitutions and constructs an ML phylogeny based on SNPs identified outside the
regions spotted as undergoing recombination.

Population structure. ADMIXTURE (57) was used to gain insights into the population structure and
ancestral relationship of the V. parahaemolyticus ST36 group. Briefly, VCFtools (58) was used to convert
the SNPs extracted from the genome alignment without recombination (see above) to PLINK format
v1.07 (59), producing PED (which describes the individuals and genetic data) and MAP (describes the 349
SNPs, including their positions) files. SHAPEIT v1 (60) was used with default parameters to phase the data.
The haplotype data obtained were subsequently used to estimate the ML of individual ancestries by
ADMIXTURE. Different numbers of populations (K values of 1 to 9) were evaluated, and a K value of 6 was
chosen as a sensible modeling choice (exhibited less cross-validation error than other K values). The
output containing the ancestry fractions (Q) and allele frequency of the inferred ancestral population (P)
was plotted with an R script (https://github.com/zeeev/ZevRTricks/blob/master/Addmixture2.plots.R).

Genetic diversity. The genetic diversity of the strains was calculated from within and between the
six populations previously identified by ADMIXTURE analysis. The mean nucleotide diversity of popula-
tions with more than two genomes and the mean interpopulation diversity (previously identified by
ADMIXTURE analysis) were calculated with MEGA7 (61) by using the core genome alignment without
recombination regions, 100 bootstrap replications for variance estimation, and default settings. The plots
were generated with ggplot2 (http://ggplot2.org/) and plotly (https://plot.ly/).

Bayesian phylodynamic analysis. The temporal signal in the data and how well molecular phy-
logenies conform to a molecular clock were initially explored with Path-o-gen v1.4 (62) (renamed
Tempest; http://tree.bio.ed.ac.uk/software/tempest/) by regression analysis of the root-to-tip distance
over time. Best-fitting root analysis identified the tree and the root of the tree that gave the best fit to
the hypothesis of a constant rate of evolution. The spatial dynamics of ST36 were constructed by a
Bayesian discrete phylogeographic approach in BEAST v1.8.1 (63) on the basis of the nonrecombining
core genome sequences of 48 samples isolated at different times (1988 to 2013) at different locations on
the Pacific Northwest or Atlantic coast of the United States and in Spain (Table S1). A total of 349 SNPs
and 4,396,495 bp of nonpolymorphic sites were used for Bayesian inference by using the Hasegawa-
Kishino-Yano (HKY) nucleotide substitution model, accounting for site heterogeneity with a gamma
distribution (four categories). Different demographic (constant population size, exponentially growing
population, Gaussian Markov random field, Bayesian skyride, and Bayesian skyline plot) and molecular
clock (strict, random, and uncorrelated lognormal) models were run. For each demographic-molecular
clock combination, the harmonic mean estimator (64), posterior simulation-based analogue of Akaike’s
information criterion (65), and PS and SS values (66) were calculated to select the best demographic
model for this data set. The selection of the demographic model was based on the comparison of Bayes
factors after thermodynamic integration to compute the marginal likelihood of each model by PS and SS
methods. Each model was run for 100,000,000 states, with a sample frequency of 10,000, to check for
convergence in the data set. A final target tree was generated with the TreeAnnotator utility in BEAST
(burn-in of 10,000,000 states), and all effective sample size (ESS) values for the model parameters in the
runs were �200.

Phylogenetic analysis and evolutionary rate estimation based on local clock. To investigate the
evolutionary rates within all of the ST36 lineages identified by ADMIXTURE, we performed local clock
model analyses with BEAST v1.8 (62). A fixed local clock under a demographic model of constant
population size was selected as the model with the fewest parameters to prevent overfitting, as
suggested by Ho and Duchêne (67). We used as the input the core genome alignment (4,396,497 bp)
without recombinant regions. The strains were classified as different taxa on the basis of the six
populations identified by ADMIXTURE. Chains were run for 50 million iterations and sampled every 1,000
generations. Convergence of parameters was confirmed by calculating the ESS with Tracer v1.6.1
(http://beast.community/tracer) and excluding an initial 10% of the burn-in for each run. All parameter
estimates showed an ESS of �200. The maximum-credibility trees were summarized with TreeAnnotator
and visualized with FigTree 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree).

Spatial phylogenetic reconstruction. SPREAD v1.0.6 (68) was used to analyze and visualize phylo-
geographic reconstructions resulting from Bayesian inference of spatiotemporal diffusion by using the
outputs from the Bayesian phylogeographic analysis. This software mapped phylogenies annotated with
discrete spatial information on the ST36 genomes and exported high-dimensional posterior summaries
to keyhole markup language for animation of the spatial diffusion through time in virtual-globe software
such as Google Earth (https://www.google.com/earth/).

Analysis of SST trends on the east coast of the United States. Trends in mean SSTs were
estimated by using daily SST data from a coastal area limited by the coordinates 37.75 to 39.25°N and
75.5 to 76.5°W. The mean SST data were obtained from the Optimum Interpolation SST 1/4° daily data
set, which extends from 1982 to the present and is distributed by NOAA/National Centers for Environ-
mental Information. This data set combines satellite retrievals and in situ SST data from ships and buoys.
We used these analyzed fields to estimate the trends in the region of interest, detect possible significant
regime shifts, and study the habitat suitability of V. parahaemolyticus in the region. Regime shift, defined
as rapid reorganizations of ecosystems from one relatively stable state to another, was investigated with
the Sequential Regime Shift Detection software (http://www.beringclimate.noaa.gov/regimes/). This
program detects statistically significant shifts in the mean level and the magnitude of fluctuations in time
series taking autocorrelation into account (69).
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Accession number(s). The draft genome sequences of all 44 V. parahaemolyticus strains used in our
study are available in GenBank under the accession numbers listed in Table S1. The genome sequence
of strain 10329 is available in GenBank under accession number JWSS00000000.
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