


















Enterobacter, was transferred to the genus Serratia in 1971 on the
basis of DNA relatedness studies (60, 61).

We used genome sequences of many diverse Enterobacter spe-
cies isolates to refine species designations for this genus. Using
ANI and SNP analyses, we placed 447 Enterobacter genomes into
19 phylogenomic groups—18 groups (A to R) in the E. cloacae
complex and 1 in E. aerogenes. Groups containing type strains
were given specific species names; otherwise, just “cloacae com-
plex” was used with the strain name. The distinct phylogenomic
grouping of E. aerogenes on the basis of whole-genome sequencing
clearly supports the previously proposed argument to rename this
species K. aerogenes (40).

Carbapenemase-producing Enterobacter spp. are increasingly be-
ing identified in clinical settings; however, knowledge regarding their
genomic nature, population structure, and resistance plasmid char-
acteristics remains limited. Carbapenemase-producing strains were
found in nearly every group (Fig. 2). The genomic signatures (includ-
ing resistance determinants, Tn4401 variants, plasmids, and host ge-
nomes) strongly suggested that both horizontal gene transfer and
clonal expansion have contributed to the dissemination of carba-
penem-resistant strains in this genus. We also showed that plasmid
gene content can influence the topology of trees drawn from the pres-
ence/absence of gene content and therefore should be removed prior
to the generation of gene content trees from pangenome studies.

FIG 6 Representation of major KPC-harboring plasmids among 97 Enterobacter isolates. (Left) Core SNP phylogenetic tree generated by RAxML. Core SNPs were
identified by kSNP v 3.0 (see Materials and Methods). (Middle) The metadata, including isolation location, ST, KPC variants, Tn4401 isoforms, and predicated
blaKPC-harboring plasmids. (Right) Plasmid composition is illustrated by showing the BLASTn matches to each Enterobacter genome across all of the genes on the three
reference plasmids, pBK30683, pKPC_UVA01, and pKpQIL. The blue bar denotes a minimal 95% nucleotide sequence identity to the plasmid genes. Abbreviations: uva,
pKPC_UVA01-like plasmid; FIA, pBK30683 or pBK30661-like plasmid; Bk., pBK28610-like plasmid; qil, pKpQIL-like plasmid; ukn,blaKPC-harboring contigs could not
be assigned to a known or novel plasmid group; n, pKp048-like non-Tn4401 mobile element (NTMKPC). Blue bars denote a �95% nucleotide sequence match to the
plasmid genes.
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Our study demonstrated that the spread of blaKPC among En-
terobacter spp. is due to multiple complex mechanisms. First, we
have observed the acquisition of a blaKPC-harboring plasmid by a
specific host strain, followed by clonal expansion into different
geographic regions. The example is the clonal spread of E. xiang-
fangensis ST171 harboring blaKPC-3 on an IncFIA plasmid (Fig. 7).
IncFIA plasmid pBK30683-like was one of the predominant
blaKPC-harboring plasmids in K. pneumoniae and has been circu-
lating in New York-New Jersey hospitals since the early 2000s (27).
Subsequently, this plasmid was identified in Enterobacter spp. in
2009 from different hospitals in the New York-New Jersey area

(27). We suspected that the pBK30683-like plasmids in Enterobac-
ter spp. may originate through horizontal plasmid transfer from
K. pneumoniae. Of note, pBK30683-like plasmids have two differ-
ent forms, the nonconjugative pBK30661 type and the conjuga-
tive/cointegrate pBK30683 type (27). Interestingly, the MN/ND
ST171 clade all carry the pBK30661-type plasmid, and in contrast,
the majority of NY/NJ isolates (except for 35024, 34988, 32600,
41948, and 31613) harbored the cointegrate pBK30683-type plas-
mid (Fig. 7). It is hypothesized that the carbapenem-resistant
ST171 MN/ND isolates were descendants of an ST171 strain har-
boring a nonconjugative IncFIA plasmid or originated by the ac-

FIG 7 Representation of plasmid distribution among ST171 Enterobacter isolates. (Left) Core SNP phylogenetic tree generated by RAxML (see Materials and
Methods). (Middle) The metadata, including isolation location, isolation year, Tn4401 isoforms, and predicated blaKPC-harboring plasmids. (Right) Plasmid
composition is illustrated by showing the BLASTn matches to each Enterobacter genome across all of the genes on the reference plasmids. Six plasmids from
completely sequenced E. xiangfangensis ST171 strain 34978, along with IncX3 plasmid pIncX-SHV (JN247852) and IncX4 plasmid pMNCRE44_4 (CP010880),
were used as references. Blue bars denote a �95% nucleotide sequence match to the plasmid genes.
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quisition of an IncFIA cointegrate plasmid by a local ST171 strain,
and the IncF region on pBK30683 was subsequently lost. The non-
conjugative IncFIA plasmid in MN/ND ST171 strains is not able
to conjugate and can only be spread clonally, until it forms novel
cointegrates as reported elsewhere (21, 57, 62).

Second, horizontal transfer of a common plasmid across dif-
ferent phylogenomic clades has occurred in Enterobacter spp. One
example is the identification of pKPC_UVA01-like plasmids in
multiple phylogenomic groups (Fig. 6). pKPC_UVA01, initially
described in K. pneumoniae in a Virginia hospital system, has now
been frequently found in various species, including K. pneu-
moniae, E. cloacae, E. aerogenes, E. coli, K. oxytoca, and Citrobacter
freundii (25, 63). A recent study indicated that in pKPC_UVA01,
Tn4401b was integrated into blaTEM-1-containing transposon Tn2
and the Tn2-Tn4401 nested transposon was translocated into dif-
ferent plasmid backbones (63). The authors of that study warned
that the use of reference-based plasmid interpretation may pro-
duce misleading results. In this study, only the de novo assembled
contigs containing both Tn4401 and additional pKPC_UVA01
core plasmid genes (e.g., replicons) were considered in the analy-
sis (see Materials and Methods). Using this approach, 15
pKPC_UVA01-like plasmids were found. Our results showed that
the pKPC_UVA01-like plasmids spread into different groups of
Enterobacter spp. and were identified in different geographic re-
gions (New York, Michigan, Maryland, Illinois, and Florida). In
addition, six pKPC_UVA01-like plasmids carry blaKPC-2, while
nine harbor blaKPC-3, indicating multiple independent acquisi-
tions of different blaKPC variants with Tn4401 integrated into a hot
spot on the same plasmid backbone. Another example is the IncX7
plasmid harboring blaKPC-2 from Columbia. We identified nearly
identical ~47-kb contigs containing Tn4401b and IncX7 plasmid
core operons (encoding replication, stability, and transfer) in
44565 (group A), 44517 (group B), and 44593 (group Q).

Third, multiple discrete acquisition events involving blaKPC-
containing elements (e.g., Tn4401) have contributed to the dis-
semination of carbapenem resistance in Enterobacter spp. We
found that Tn4401d and Tn4401a in the 72 blaKPC-bearing isolates
were associated with pBK30683- and pKpQIL-like plasmids, re-
spectively. In contrast, Tn4401b showed a high degree of diversity
regarding its TSDs and harboring plasmids. Nine unique TSDs
were found to be associated with Tn4401b, suggesting the repeated
acquisition of Tn4401 on different plasmids or different locations
on the same plasmid (e.g., IncN) backbones (see Data Set S1).

Finally, there are common blaKPC-harboring plasmids in
K. pneumoniae that are nearly absent in Enterobacter spp. IncFIIK

pKpQIL-like plasmids are among the most predominant blaKPC-
harboring plasmids in K. pneumoniae and E. coli from the north-
western United States and other geographic regions (21, 47, 49,
51–55), but interestingly, among the 72 blaKPC-harboring isolates,
only 2 E. aerogenes isolates have been found to carry pKpQIL. Of
note, the time period of the present study overlaps our previous
molecular surveillance study that investigated the prevalence of
pKpQIL in K. pneumoniae (47). Our previous study found the
pKpQIL-like plasmids accounted for as much as 35% of the
blaKPC-harboring plasmids in K. pneumoniae (47). In contrast, in
the present study, only 3% (2/72) of the blaKPC-harboring plas-
mids are pKpQIL. In addition, searches of the public Enterobacter
genomes did not identify any additional pKpQIL replicons (pos-
itive for both IncFIIK and IncFIBqil). This finding may mean that

IncFIIK pKpQIL plasmids are not “compatible” or “stable” in the
Enterobacter host.

E. xiangfangensis ST171 strains are the most predominant En-
terobacter clones reported in our study and in the public databases.
However, unlike the epidemic K. pneumoniae ST258 strains,
where two distinct subgroups arose because of recombination in
the K antigen-encoding capsule polysaccharide biosynthesis gene
(cps) region (64), the ST171 isolates likely evolved from a common
ancestor and two major clusters each acquired distinct resistance
plasmids. Several outbreaks and clonal spread have been linked to
the ST171 isolates, suggesting that this genetic background con-
tributes to the epidemiological success of ST171.

Our study has limitations. More than half of the isolates in this
study are from the New York-New Jersey area, and consequently,
this capture likely does not define the overall molecular epidemi-
ology of carbapenem-resistant Enterobacter spp. in the United
States or worldwide. In addition, as KPC is the main carbapen-
emase in the United States and most of the isolates harbored
blaKPC, our study was not able to examine the genomic structures
of carbapenem-resistant Enterobacter strains producing other car-
bapenemases, such as NDM, OXA-48, VIM, and IMP. A further
study including Enterobacter isolates producing other carbapen-
emases will likely reveal additional genomic characteristics con-
tributing to carbapenem resistance. Moreover, only six isolates
were characterized by long-read sequencing, which produced
closed genomes, and the results of most isolates were interpreted
on the basis of de novo assemblies of short-read data. Because of
the limitation of short-read data, the genetic structures, particu-
larly repetitive regions, are hard to resolve. This is largely the rea-
son why we were not able to define the structures of blaNDM-
harboring plasmids and why no conclusive blaKPC plasmids were
identified in 19 out of 72 KPC-producing isolates. Overall, how-
ever, our deep genomic analysis across the Enterobacteriaceae fam-
ily has clearly defined the phylogeny and revealed distinct genomic
signatures linked to carbapenem resistance.

The data presented here represent the first comprehensive
study of phylogenomic relationships, antibiotic resistance, and
plasmid discrimination of carbapenem-resistant Enterobacter spp.
Our study suggests that acquisition of specific plasmids, successful
host clones, and plasmid-host combinations are driving the mo-
lecular evolution of carbapenem resistance in the Enterobacter ge-
nus. Carbapenem resistance due to blaKPC has resulted in a patho-
gen that is difficult to treat, and in many instances, the clinical
options are limited to less effective therapy. Improved under-
standing of the relationships among Enterobacter species and
strains and the genetic context of resistance genes that they carry
will be of significant value in tracking these organisms in a clinical
context and in developing strategies to limit their spread.

MATERIALS AND METHODS
Bacterial isolates. Ninety-seven Enterobacter sp. clinical isolates were col-
lected from patients at 16 health care institutions in the United States
(New York City [n � 43], New Jersey [n � 13], Florida [n � 20], Illinois
[n � 1], Michigan [n � 3], Ohio [n � 3], and Pennsylvania [n � 4], Texas
[n � 1]), South America (Colombia [n � 7]), and the Mediterranean
region (Gaza [n � 2]). We selected six representative KPC-harboring
Enterobacter isolates for complete genome sequencing on the basis of the
presence of blaKPC gene variants, Tn4401 isoforms, multilocus sequence
typing, and geographic and temporal distribution. Enterobacter species
isolates were cultured overnight in lysogeny broth at 37°C for subsequent
isolation of DNA for genome sequencing (see below). MICs were deter-
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mined by broth microdilution in cation-adjusted Mueller-Hinton broth
according to Clinical and Laboratory Standards Institute methods with
Sensititre GNX2F panels (Thermo Fisher Scientific).

Enterobacter sp. de novo DNA sequencing. Enterobacter sp. DNA was
isolated from overnight cultures with a MasterPure Gram Positive DNA
Purification kit (Epicentre, United States) as recommended by the man-
ufacturer. Libraries were prepared for sequencing with Illumina Nexter-
aXT kits and sequenced on an Illumina NextSeq with paired 150-base
sequence reads. In general, �100-fold coverage was obtained for each
genome. Each read set was assembled individually with SPAdes (37) and
annotated with NCBI’s PGAAP pipeline (http://www.ncbi.nlm.nih.gov/
genome/annotation_prok/). PacBio libraries were constructed and se-
quenced according to the manufacturer’s recommendations to ~100�
coverage.

Characterization of Enterobacter species strains. In silico multilocus
sequence typing of 390 E. cloacae complex strains was performed with the
MLST 1.8 online server (24, 38). The antimicrobial resistance genes and
plasmid replicons in the sequenced Enterobacter isolates were identified by
BLAST searching with the databases of ResFinder 2.1 (39) and Plasmid-
Finder 1.3 (65). Additional novel plasmid replicons from the present
study were included in the analysis as well.

kSNP Enterobacter trees. A phylogenetic tree was inferred from SNPs
identified by kSNP v 3.0 (30) by using a k-mer length of 19 nucleotides and
a requirement that at least 80% of the genomes (i.e., 303 genomes) have a
nucleotide at a given SNP position in order for the SNP to be considered
to be core and included in tree building. A total of 501,576 core SNP
positions were identified. These SNPs were used to infer a maximum-
likelihood tree with RAxML (31) with 100 bootstrap replicates. The re-
sulting tree was rendered with metadata annotated with GraPhlAn (66).

Universal marker tree. A total of 248 publically available genomes
belonging to 48 Enterobacteriaceae genera were downloaded from Gen-
Bank. At least five genomes from each genus were included, prioritizing
type strains, closed genomes, high-quality whole-genome sequences (e.g.,
contig N50 of 20 kbp or greater and �500 contigs), and phylogenetic
diversity. In cases where there were fewer than five genome representa-
tives of a given genus, all of the genomes meeting minimum assembly
quality thresholds were downloaded. Twenty-six different universal
marker genes (atpD, rplA, rplB, rplC, rplE, rplF, rplK, rplM, rplN, rplP,
rplR, rplV, rpoA, rpsB, rpsC, rpsD, rpsE, rpsG, rpsH, rpsI, rpsK, rpsL, rpsM,
rpsO, rpsQ, and secY) were used as seed sequences to identify the corre-
sponding gene locus in each genome. These genes are universally con-
served among bacteria and produce monophyletic phylogenies, suggest-
ing that they undergo minimal horizontal transfer (67–69). Individual
genes were identified by the J. Craig Venter Institute gene locus-typing
program LOCUST (unpublished data), concatenated, and aligned with
MUSCLE (70). The resulting alignment was used to generate a maximum-
likelihood tree from 100 bootstrapped replicates with RAxML (31). The
resulting tree was rendered with metadata annotated with GraPhlAn (66).

Pangenome analysis. Clusters of orthologous proteins were generated
with version 3.24 of PanOCT (41) as previously described (71, 72). Plots
and calculations of pangenome size, new genes discovered, and pange-
nome status (open versus closed) were also determined as described pre-
viously (71).

ANI. ANI of Enterobacter genomes was performed by PanOCT version
3.24, which has been modified to also accept nucleotide sequences as an
alternative input to amino acid sequences as in previous versions.

Plasmid classification. The blaKPC-harboring contigs were extracted
from the de novo assemblies, followed by a BLASTn search against publicly
available plasmid sequences in GenBank. If the contig coexisted with
other plasmid core elements (e.g., the replicon) and showed �99% iden-
tity to and �90% query coverage of a known plasmid, the contig was
preliminarily classified as the reference-like plasmid (e.g., pUAV01_KPC-
like). The contig should have the same Tn4401 variant and TSD as the
reference plasmid. The contigs were further aligned to the putative refer-
ences and visually inspected to confirm the plasmid contents with Ge-

neious (version 8.1; Biomatters Ltd., Auckland, New Zealand). Further-
more, BLASTn comparisons of each isolate’s de novo assembly and the
reference plasmid were conducted, and the presence of a reference-like
plasmid was defined as �99% sequence identity over �80% of the length
of the reference. The plasmid content diagrams were generated by R with
the plotTree.R script (available at https://github.com/katholt/RedDog).

Variant detection. Single-nucleotide variant (SNV) analysis for
ST171 isolates was performed with the RedDog pipeline (https://github
.com/katholt/RedDog). In brief, the Illumina reads were mapped to
ST171 reference strain 34978 with Bowtie2 (73), and SNVs were called by
SAMtools (74) (Phred score, �30; read depth, �10). Consensus alleles at
all SNV sites were then extracted with SAMtools (74). SNV sites present in
all ST171 genomes were concatenated to generate a core SNV alignment
for phylogenetic analysis. Draft genomes from the public database were
each shredded into 1 million 100-bp reads (with SAMtools wgsim) and
subjected to the same analysis as the Illumina reads.

Accession number(s). All of the genomes determined in this study are
available at NCBI under BioProject no. PRJNA259658.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
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