












inactivated, sucrose purified A/California/04/2009. Aluminum hydroxide
adjuvant was given as Imject alum adjuvant (Pierce).

Viruses. For the pdmH1N1 studies, mice were challenged with A/Cal-
ifornia/04/2009. For the H7N9 studies, mice were challenged with A/An-
hui/1/2013 H7N9 virus, which is antigenically similar to the vaccine strain
and causes relatively severe disease in mice (14, 28). All viral stocks were
propagated in the allantoic cavity of 10-day-old specific-pathogen-free
embryonated chicken eggs at 37°C. Allantoic fluid was harvested, cleared
by centrifugation, and stored at �80°C as described previously (37, 38).

Viral titers were determined by 50% tissue culture infectious dose
(TCID50) analysis as previously described (37).

Cells and culture medium. MDCK cells were cultured in Eagle’s
minimum essential medium (MEM; Mediatech, Manassas, VA) sup-
plemented with 2 mM glutamine and 10% fetal bovine serum (FBS;
Gemini Bioproducts, West Sacramento, CA) and grown at 37°C under
5% CO2.

Animal experiments. Six-week-old C57BL/6 (lean) and B6.Cg-
Lepob/J (obese) mice (Jackson Laboratory, Bar Harbor, ME) were bled for

FIG 5 Survival, weight loss, and lung viral titers in vaccinated lean and obese mice following H7N9 virus challenge. (a, b) Three weeks postboost, lean (solid
symbols) (a) and obese (open symbols) (b) mice (n � 5 or 6/type/group) were challenged with 100� MLD50 of influenza virus A/Anhui/1/2013. The mice were
monitored for weight and survival daily for 14 days postinfection. Weight data are presented as mean values � standard errors. Statistical significance was
determined using ANOVA, with a P value of �0.05 deemed significant compared to the PBS controls. Survival data are presented as the percentages of animals
surviving among the total number monitored. Statistical significance was determined by log rank (Mantel-Cox) test, with a P value of �0.05 deemed significant
compared to the PBS control group. *, P � 0.05; **, P � 0.005. (c) Viral titers were determined in lungs from vaccinated lean (blue) and obese (green) mice at
day 3 and day 5 postinfection with influenza virus A/Anhui/1/2013 (H7N9). Data are presented as mean log10 TCID50/ml � standard error. Statistical
significance was determined using ANOVA, with vaccine strategy, mouse type, and day postinfection as the main effects. Tukey’s test was used for post hoc
comparison between days postinfection, mouse types, and vaccine strategies. Differences were considered significant at a P value of �0.05. *, P � 0.05; **, P �
0.005; ***, P � 0.0005; ****, P � 0.00005. Solid lines indicate significance within vaccine strategies, and dashed lines indicate significance between lean and obese
groups. The dashed red line indicates the limit of detection for the assay.
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baseline sera, lightly anesthetized with isoflurane, and vaccinated (n � 10
or 11/group) with PBS or 0.375 �g (standard dose) or 1.4 �g (high dose)
H7N9 vaccine with or without adjuvant. Three weeks after the initial
vaccination, mice were bled and then boosted. Three weeks postboost,
animals were lightly anesthetized with isoflurane, bled, and then inocu-
lated intranasally with PBS or 100�, 10�, or 1� (105.5, 104.5, and 103.5

TCID50, respectively) MLD50 (based on lean animals) of virus in 30 �l
PBS. Mice were monitored daily for clinical signs of infection and weighed
every 24 h postinfection (39). At days 3 and 5 after 100� MLD50 infection,

mice (n � 3/group) were euthanized, and tissues were harvested and
processed immediately or stored at �80°C for future analysis. Moribund
mice losing more than 30% body weight and reaching a specified body
condition index score were humanely euthanized. For passive transfer
experiments, serum was prepared from vaccine-plus-adjuvant-
vaccinated mice to equivalent IgG levels, and then 100 �l was injected into
lean or obese mice intraperitoneally. Twenty-four hours posttransfer,
mice were bled and infected with 100� MLD50 of virus as described
above.

FIG 6 Survival, weight loss, and lung viral titers in vaccinated lean and obese mice following H1N1 virus challenge. (a, b) Three weeks postboost, lean (solid
symbols) (a) and obese (open symbols) (b) mice (n � 5 or 6/type/group) were challenged with 100� MLD50 of influenza virus A/California/04/2009. Mice were
monitored for weight and survival daily for 14 days postinfection. Weight data are presented as mean values � standard errors. Statistical significance was
determined using ANOVA, with a P value of �0.05 deemed significant compared to the PBS controls. Survival data are presented as the percentages of animals
surviving among the total number monitored. Statistical significance was determined by log rank (Mantel-Cox) test, with a P value of �0.05 deemed significant
compared to the PBS control group. *, P � 0.05; **, P � 0.005. (c) Viral titers were determined in lungs from vaccinated lean (blue) and obese (green) mice at
day 3 and day 5 postinfection with influenza virus A/California/04/2009. Data are presented as the mean log10 TCID50/ml � standard error. Statistical
significance was determined using ANOVA, with vaccine strategy, mouse type, and day postinfection as the main effects. Tukey’s test was used for post hoc
comparison between days postinfection, mouse types, and vaccine strategies. Differences were considered significant at a P value of �0.05. *, P � 0.05; **, P �
0.005; ***, P � 0.0005; ****, P � 0.00005. Solid lines indicate significance within vaccine strategies, and dashed lines indicate significance between lean and obese
groups. The dashed red line indicates the limit of detection for the assay.
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Influenza virus-specific antibody determination. Mouse sera were
treated with receptor-destroying enzyme (RDE; Seiken), and hemagglu-
tination inhibition (HAI) assays were performed according to WHO
guidelines (40). Luminescent microneutralization (MN) assays were per-
formed as previously described, using a reverse genetics-generated
A/Anhui/1/2013 virus or A/California/04/2009 virus containing an NLuc
(NanoLuc luciferase) on its polymerase segment (41). Neuraminidase in-
hibition assays were conducted by enzyme-linked lectin assay for N1- and
N9-specific antibodies as previously described (14), using a recombinant
reverse genetics (rg)-H6N9 virus with the NA from A/Anhui/1/H7N9
(H7N9) and a mismatched HA from A/Teal/Hong Kong/W312/1997
(H6N1) or an A/California/04/2009 virus.

Influenza-specific ELISA. H7N9-specific IgG ELISAs were performed
as described previously (42), utilizing horseradish peroxidase-conjugated
goat anti-mouse antibodies (Southern Biotech, Birmingham, AL).

Stalk antibody ELISA. Recombinant stalk proteins against H1 and H7
were produced (43, 44), and ELISAs were performed as previously de-
scribed (45).

Antigen microarrays. Peptides 20 amino acids in length spanning the
HA and NA proteins of the A/Anhui/1/2013 (H7N9) virus were generated
with 15-amino-acid overlaps, resulting in the synthesis of 110 HA pep-
tides and 90 NA peptides synthesized at �90% purity (CPC Scientific). A
small number of peptides were synthesized at �70% purity, following
multiple synthesis and purification attempts. A poly(K) linker was added
to each peptide to increase solubility and to improve the binding orienta-
tion of peptides to the Hydrogel slides. The peptides were lyophilized in

FIG 7 Increasing the vaccine dose does not confer protection in obese mice. (a) Obese mice were vaccinated with a 4� increased dose of vaccine and bled for
serological analyses. (b) Mice were then challenged with influenza virus A/Anhui/1/2013 and monitored for survival daily for 14 days postinfection. Statistical
significance was determined by log rank (Mantel-Cox) test, with a P value of �0.05 deemed significant compared to the PBS control group. *, P � 0.05. (c) Days
of survival are presented as the number of days mice survived after influenza virus challenge � standard error. Statistical significance was determined using
ANOVA, with vaccine strategy and mouse type as the main effects. A P value of �0.05 compared to the PBS control group was deemed significant. *, P � 0.05;
**, P � 0.005; ***, P � 0.0005; ****, P � 0.00005. Asterisks alone indicate significance compared to the PBS control group, and dashed lines indicate significance
between vaccine strategies.

FIG 8 Survival in obese mice following passive serum transfer and H7N9
virus challenge. Sera containing equivalent antibody titers from either naive
(solid symbols) or vaccine-plus-adjuvant-vaccinated (open symbols) lean
(circles) or obese (squares) mice were passively transferred to 8-week-old
obese mice (n � 3/group) intraperitoneally, and then the passively immunized
mice were challenged with influenza virus A/Anhui/1/2013. Mice were moni-
tored for survival daily for 14 days postinfection. Survival data are presented as
the percentages of animals surviving among the total number monitored. Sta-
tistical significance was determined by the log rank (Mantel-Cox) test, with a P
value of �0.05 deemed significant compared to the unvaccinated serum con-
trol group. The data shown are representative of two separate experiments.
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5-ml tubes and were stored at 20°C. The peptides were resuspended in
100 �l dimethyl sulfoxide (DMSO) and 400 �l ultrapure water to create a
working solution of approximately 2 mg/ml. Peptide stocks were diluted
1:2 in protein-printing buffer (phosphate-buffered saline [PBS] with
0.005% Triton X-100) and printed in triplicate on N-hydroxysuccinimide
ester-derivatized glass slides (H slides; Schott/Nexterion AG) using a
QArray2 microarray instrument (Genetix) with contact microarray pins
(SMP2.5B; TeleChem). During printing, the relative humidity was main-
tained at 50 to 60%. Following printing, the slides were left to dry over-
night. The arrays were stored at 20°C. The printed grids were outlined
with a PAP hydrophobic pen (Research Products International). The
slides were chemically blocked using 4 ml of 50 mM borate, 50 mM eth-
anolamine for 1 h. The slides were then washed twice with PBS containing
0.05% Tween 20, twice with PBS, and once in deionized water and then
spun to dry at 1,000 � g for 5 min at room temperature. Serum samples
were diluted 1:25 in 1% bovine serum albumin and 0.025% Tween 20,
incubated on slides for 2 h in a humidified chamber at 25°C, and then
washed twice with PBS containing 0.05% Tween 20 and twice with PBS.
Bound immunoglobulins were detected for 45 min with Alexa Fluor 647
goat anti-mouse IgG (115-605-008; Jackson ImmunoResearch). The ar-
rays were washed as noted above and were spun dry as described above.
The slides were scanned on a two-laser GenePix 4400SL scanner (Molec-
ular Devices) probing for IgG responses. Images were analyzed using
GenePix version 7.2 to obtain the mean fluorescence intensity (MFI) for
each probe. All samples were run the same day and processed together.

Negative controls were run in triplicate for subtraction of background.
Responses below 1,000 MFI after subtraction of background were consid-
ered negative (MFI range, 0 to 65,000). Subsequently, all data were ana-
lyzed with MatLab (MathWorks) and Python. For each probe, we used the
median response and subtracted the average background of multiple neg-
ative controls.

Data representation. We denote the normalized array measurements
by xi,p,ap

, where i is subject, i � 1, . . ., N; p is pathogen, p � 1, . . ., P; ap is
antigen a from pathogen p, ap � 1, . . ., Np. zi denotes the treatment
assignment (vaccine/placebo) of subject i and yi denotes the outcome of
subject i (vaccine-induced antibody titer/infection status/disease status);
the observed data for each subject are �zi,yi,xi,p,ap

� for i � 1, . . ., N, p � 1,
. . ., P, and ap � 1, . . ., Np.

The antibody profile generated by the AMs is a multidimensional
measurement of the antibody responses to a large set of overlapping
peptides from HA and NA. To compare the peptide responses to the
HAI and MN assays as measured by the AM for a given subject, we
define the breadth b and magnitude m of responses to each protein as
follows:

mi,p � �
ap�1
NP xi,p,ap

denotes the magnitude of responses to all antigens of pathogen p and

bi,p � �
ap�1
NP I�xi,p,ap

� 0�
denotes the breadth of response to antigens from pathogen p, where I

denotes the indicator function, and where positivity (xi,p,ap
�0) is deter-

mined using the responses of negative controls.
Statistical analysis. For the survival data, statistical significance was

determined by log rank (Mantel-Cox) test, with a P value of �0.05
deemed significant compared to the data for the PBS control group. For
comparisons between groups for the serological and viral studies, statis-
tical significance was determined using analysis of variance (ANOVA),
with vaccine strategy, mouse type, and day postinfection as the main ef-
fects. Tukey’s test was used for post hoc comparison between days postin-
fection, mouse types, and vaccine strategies. Differences were considered
significant at a P value of �0.05. For antibody arrays, the responses of
groups were compared using the Wilcoxon rank sum test. The responses
of each group were summarized by median values. All P values for asso-
ciations between the AM data and HAI and MN assays were computed
using Spearman’s rank-order correlation. Adjustments for multiplicity
were computed using the Bonferroni correction and were adjusted sepa-
rately for comparing different vaccine treatments (PBS, vaccine, and vac-
cine plus adjuvant) within each mouse group and for comparing the same
vaccine across the two mouse groups.’s

SUPPLEMENTAL MATERIAL
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FIG 9 Obese mice are more susceptible to severe influenza virus infection and
not fully protected from decreased viral dose. (a) Obese mice were challenged
with decreasing amounts of influenza virus A/Anhui/1/2013 (H7N9) to calcu-
late the MLD50. (b) Three weeks after being boosted with a standard vaccine,
lean (solid symbols) and obese (open symbols) mice (n � 5/type/group) were
challenged with influenza virus A/Anhui/1/2013 (H7N9) at 10� MLD50 for
lean mice/316� MLD50 for obese mice or 1� MLD50/31.6� MLD50 for obese
mice. Survival was monitored for 14 days postinfection.
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