














tein (with 1 mM FK506) with a solution containing 2 M lithium sulfate,
0.1 M Tris-HCl (pH 8.5), and 2% PEG 400 at a 1:1 ratio. C. albicans
FKBP12(P104G) apo crystals were grown by mixing protein at 10 mg/ml
1:1 with a combination of 2 M ammonium sulfate, 0.1 M CAPS (pH 10.5),
and 0.2 M lithium sulfate. The crystals could be cryopreserved straight
from the drop. Data were collected at Advanced Light Source beamline
8.3.1 or Advanced Photon Source. Data were processed with HKL3000 or
MOSFLM. Initial phases were obtained in each case by using molecular
replacement (MolRep), starting with the human FKBP12 model (PDB
code 2PPN). The A. fumigatus and C. glabrata apo structures were solved
by using the C. albicans apo high-resolution structure as a starting model
in MolRep. The FK506-bound structures were solved by using the requi-
site apo structures as starting models. All model building was carried out
with COOT or O, and refinements were performed in PHENIX (42).

Mutant A. fumigatusFKBP12(V91C) construction, disulfide cross-
linking experiments, and determination of the structure of the cross-
linked dimer. Mutant A. fumigatus FKBP12(V91C) was made with the

QuikChange kit. The pET15b plasmid expressing the mutant protein was
transformed into C41(DE3) and SHuffle cells. The protein was expressed
and purified in the same way as WT A. fumigatus FKBP12, except that no
reducing agent was added at any step. The A. fumigatus FKBP12(V91C)
dimer was separated from the monomer via size exclusion chromatogra-
phy, and the His tag was cleaved before crystallization trials. The protein
was concentrated to 30 mg/ml, and crystals were grown by mixing the
protein solution 1:1 with a reservoir consisting of 1.5 M sodium citrate
and 0.1 M sodium cacodylate (pH 6.5). Crystals grew within 3 h and were
cryopreserved by being dipped for 1 s in a drop containing the crystalli-
zation solution supplemented with 25% glycerol. Data were collected and
processed with MOSFLM. The structure was solved by MolRep with the
A. fumigatus apo structure as a search model. The structure was refined
with PHENIX (43).

Construction of A. fumigatusFKBP12(P90G) and FKBP12(V91C)
strains. A. fumigatus WT strain akuBKU80 was used for all transformation
experiments and grown on glucose minimal medium (GMM) at 37°C

FIG 5 A. fumigatus FKBP12(V91C) mutation captures the intermolecular contact. (A) SDS-PAGE purification of FKBP12(V91C) from both SHuffle and
C41(DE3) cells. Dimers are evident in the gel run without a reducing agent. Addition of a reducing agent leads to reduction of the disulfide bond and the proteins
running as monomers. (B) Crystal structure of A. fumigatus FKBP12(V91C). (C) 2Fo-Fc electron density map contoured at 1 � showing the region around the
V91C disulfide bond and the Pro89-Pro90 bond, which adopts a twisted, trans conformation-like state. (D) Ribbon diagram showing a closeup of the Pro89-
Pro90 region with the residues labeled. Note that the green-labeled Pro90 side chains appear distorted.
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(44). In certain experiments, GMM agar or RPMI liquid medium was
supplemented with FK506 (0.1 to 10 �g/ml). All radial-growth experi-
ments were repeated three times, each in triplicate. E. coli DH5� compe-
tent cells were used for subcloning. Site-directed mutagenesis of two
FKBP12 residues (P90G and V91C) was performed with the primers listed
in Table S2 in the supplemental material and the pUCGH-FKBP12 plas-
mid (45), consisting of 384 bp of the 637-bp fkbp12 gene (fkbp1/
Afu6g12170, http://www.aspergillusgenome.org) and ~1 kb of the fkbp12
terminator sequence as the template. Briefly, in the first PCR, two frag-
ments were amplified with complementary primers (with respective mu-
tations) overlapping the fkbp12 region to be mutated and the respective
primers at the N and C termini of fkbp12. No stop codon was introduced
at the C-terminal end of fkbp12 to facilitate expression of the gfp fusion.
Next, fusion PCR was done with equiproportional mixtures of the two
PCR fragments as the templates, and the final mutated 384-bp fkbp12 PCR
fragment was amplified with primers at the N and C termini of fkbp12 (see
Table S2 in the supplemental material). Mutated fkbp12 fragments were
digested with KpnI and BamHI and cloned into the pUCGH-FKBP12
plasmid by replacing the 384-bp WT fkbp12 PCR fragment to facilitate
homologous integration. Mutated fkbp12 genes were sequenced (see Ta-
ble S2 for the primers used) to confirm the mutation and linearized with
KpnI for homologous integration. Linearized constructs were trans-
formed into A. fumigatus akuBKU80, and transformants were selected with
hygromycin B (150 �g/ml) as previously described (46). Transformants
were verified for homologous integration by PCR (see Table S2 and Fig. S5
in the supplemental material) and verified for accuracy of mutation by
sequencing and fluorescence microscopy.

Protein extraction and Western analysis. A. fumigatus recombinant
strains expressing respective WT and mutated forms of FKBP12-GFP fu-
sion proteins were cultured in liquid GMM at 200 rpm for 24 h at 37°C.
Crude extracts were prepared as previously described (47). Approxi-
mately 50 �g of protein electrophoresed on a 4 to 20% SDS-
polyacrylamide gel was transferred onto a polyvinylidene difluoride

TABLE 4 Interactions of FKBP12, FKBP12 variants, and the FRB
domain determined by Y2H analysis

AD-gene fusion BD-gene fusion Interaction Drugb

N terminia

FKBP12 FRB � Rapamycin
FKBP12 FRB �
FKBP12(P90G) FRB � Rapamycin
FKBP12(P90G) FRB �
FKBP12(V91C) FRB � Rapamycin
FKBP12(V91C) FRB �
FRB FKBP12 � Rapamycin
FRB FKBP12 �
FRB FKBP12(P90G) � Rapamycin
FRB FKBP12(P90G) �
FRB FKBP12(V91C) � Rapamycin
FRB FKBP12(V91C) �

C terminic

FKBP12 FRB � Rapamycin
FKBP12 FRB �
FKBP12(P90G) FRB � Rapamycin
FKBP12(P90G) FRB �
FKBP12(V91C) FRB � Rapamycin
FKBP12(V91C) FRB �
FKBP12 FKBP12 � Rapamycin
FKBP12 FKBP12 � FK506
FKBP12 FKBP12 �
FKBP12(P90G) FKBP12(P90G) � Rapamycin
FKBP12(P90G) FKBP12(P90G) � FK506
FKBP12(P90G) FKBP12(P90G) �
FKBP12(V91C) FKBP12(V91C) � Rapamycin
FKBP12(V91C) FKBP12(V91C) � FK506
FKBP12(V91C) FKBP12(V91C) �

a N termini of FKBP12s were fused with the GAL4 AD.
b Both rapamycin and FK506 were used at 1 �g/ml.
c C termini of FKBP12s were fused with the GAL4 AD.

FIG 6 In vivo analysis of mutant A. fumigatus FKBP12s. (A) Radial growth of the WT strain (akuBKU80) and the strains expressing WT FKBP12-GFP and the
mutated versions of FKBP12 [FKBP12(P90G) and FKBP12(V91C)] tagged with GFP were assessed after 5 days on GMM agar with or without supplementation
with FK506 (100 ng/ml). Note the resistance of the FKBP12(P90G)- and FKBP12(V91C)-producing strains to FK506. (B) Strains expressing WT FKBP12-GFP
and the mutated versions of FKBP12 [FKBP12(P90G) and FKBP12(V91C)] tagged with GFP were cultured in liquid GMM in the absence or presence of FK506
(100 ng/ml) on coverslips for 18 to 20 h and observed for the localization of FKBP12 by fluorescence microscopy. Note the complete cytosolic localization of
FKBP12s in the absence of FK506. Arrows indicate the translocation of FKBP12s to the hyphal septa in the presence of FK506 indicative of their binding to CaN
at the hyphal septa. Scale bar, 10 �m. (C) Western analysis performed with the anti-GFP polyclonal primary antibody and a peroxidase-labeled anti-rabbit IgG
secondary antibody. The arrow indicates the ~37-kDa FKBP12-GFP fusion protein. The values on the left are molecular masses in kilodaltons.
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membrane (Bio-Rad) and probed with a rabbit polyclonal antibody. The
anti-GFP primary antibody (1 �g/ml; GenScript) and peroxidase-labeled
rabbit anti-IgG (1:5,000; Rockland) secondary antibody. Detection was
performed with SuperSignal West Pico Chemiluminescent Substrate
(Thermo Scientific).

Microscopy. Conidia (104) from the recombinant strains of A. fu-
migatus were inoculated into 5 ml of GMM, poured over a sterile coverslip
(22 by 60 mm; no. 1), and placed in a sterile dish (60 by 15 mm). Cultures
grown for 18 to 20 h at 37°C were observed by fluorescence microscopy
with an Axioskop 2 plus microscope (Zeiss) equipped with AxioVision 4.6
imaging software.

Y2H analysis. The A. fumigatus fkbA gene and its variants, including
fkbAP90G and fkbAV91C and the FRB domain-encoding gene were synthe-
sized after codon optimization for S. cerevisiae expression (GenScript) and
cloned into pGADT7 or pGBKT7 (Clontech Laboratories Inc.) for Y2H
analysis. S. cerevisiae SMY4-1, which lacks the FKBP12 gene (FPR1), was
used to examine the interactions. �-Galactosidase assays were performed
as previously described (38, 39).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.00492-16/-/DCSupplemental.
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