Table S2. Consistency between our identified TSSs and previous literature.							
Gene	VIMSS ID	Name	TSS (this study)	TSS (ref.)	Methodology	Ref.	Note
SO_1778	200941	mtrC /omcB	-119	-119	5' RACE	[1]	
SO_2426	201570		-25	-25 , -27	5' RACE	[2, 3]	Both -27 and -25 are high confidence and conserved; the log-odds for -27 is lower than -25
SO_1342	200517	rpoE	-58 , -90, -173	-58	5' RACE	[4]	
SO_1427	200602	dmsAB-1 /dmsE	NA	44	5' RACE	[4]	No peak detected - dms operon is not highly expressed in rich/minimal media
SO_1126	200306	dnaK	-127	-37	5' RACE	[4]	Our dataset detected low- confidence TSS at -37 site; dnaK is induced at heat shock, but we don't have 5'RNA-seq data on heat shock condition
SO_3585	202682	azr	NA	-26	5' RACE	[5]	Our dataset detected low-confidence TSS at -26 site with moderate number of 5'RNA-seq reads mapped; azr is known to involved in growth under heavy metal conditions, and did not express in any of our tiling microarray conditions.
SO_1228	200406	torR	-23 , -159	-23	primer extension	[6]	Log-odds for -23 peak was 8.12, which is slightly lower than the cutoff used in this analysis (lo >= 10)
SO_4694	203763	torF	NA	-36	primer extension	[6]	Within our five growth conditions in microarray experiments, <i>torF</i> is only expressed in DMSO, which does not have 5'RNA-seq data.
SO_1234	200412	torECAD	NA	-33	primer extension	[7]	Same as above (only expressed in DMSO which does not have 5'RNA-seq data)
SO_4180	203263	mxdA	-184	-150	primer extension	[8]	It's suggested that <i>mxd</i> operon is induced at starvation and <i>mxdA</i> is expressed in minimal medium in our experiments.

References

- 1. Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D: MtrC, an outer membrane decahaem c cytochrome required for metal reduction in *Shewanella putrefaciens* MR-1. *Mol Microbiol* 2001, **39**(3):722-730.
- 2. Chourey K, Wei W, Wan XF, Thompson DK: **Transcriptome analysis reveals response regulator SO2426-mediated gene expression in** *Shewanella oneidensis* MR-1 under chromate challenge. *BMC Genomics* 2008, **9**:395.
- 3. Henne KL, Wan XF, Wei W, Thompson DK: **SO2426** is a positive regulator of siderophore expression in *Shewanella oneidensis* MR-1. *BMC Microbiol* 2011, **11**:125.

- 4. Gassman NR, Ho SO, Korlann Y, Chiang J, Wu Y, Perry LJ, Kim Y, Weiss S: In vivo assembly and single-molecule characterization of the transcription machinery from *Shewanella oneidensis* MR-1. *Protein Expr Purif* 2009, **65**(1):66-76.
- 5. Mugerfeld I, Law BA, Wickham GS, Thompson DK: A putative azoreductase gene is involved in the *Shewanella oneidensis* response to heavy metal stress. *Appl Microbiol Biotechnol* 2009, **82**(6):1131-1141.
- 6. Bordi C, Ansaldi M, Gon S, Jourlin-Castelli C, lobbi-Nivol C, Mejean V: **Genes regulated by TorR,** the trimethylamine oxide response regulator of *Shewanella oneidensis*. *J Bacteriol* 2004, **186**(14):4502-4509.
- 7. Gon S, Patte JC, Dos Santos JP, Mejean V: **Reconstitution of the trimethylamine oxide reductase regulatory elements of** *Shewanella oneidensis* in *Escherichia coli*. *J Bacteriol* 2002, **184**(5):1262-1269.
- 8. Muller J, Shukla S, Jost KA, Spormann AM: **The mxd operon in** *Shewanella oneidensis* **MR-1 is induced in response to starvation and regulated by ArcS/ArcA and BarA/UvrY**. *BMC Microbiol* 2013, **13**:119.