












However, there were significant increases in B cells (P � 0.043)
and CD8� T cells (P � 0.0002) between the mock-immunized and
N vaccine-immunized animals (Fig. S3E and F). Consistent with
these findings, in a cell lysate-based enzyme-linked immunosor-
bent assay (ELISA), HKU5 N and MERS-CoV N sera bound to the
appropriate recombinant proteins expressed by VRPs, indicating
induction of antigen-specific antibodies (Fig. S4). Taken together,
these results demonstrate that VRP-vectored HKU5 N- or MERS-
CoV N-based vaccines do not elicit significant eosinophilia after
homologous or heterologous challenge, supporting the develop-
ment of MERS-CoV vaccines.

Mouse adaptation of BtCoV HKU5-SE. Although the S glyco-
protein is a critical determinant for cross-species transmission,
additional mutations across the genome have been shown to con-
tribute to host switching and increased disease severity (20, 25).
To identify potential virulence alleles in BtCoV HKU5-SE, we se-
rially passaged BtCoV HKU5-SE in the lungs of 10-week-old
BALB/c mice over 2-day intervals. Virus from passage 9 (BtCoV
HKU5-SE MA [mouse adapted]) was plaque purified and used to
inoculate young (10-week-old) and aged (1-year-old) animals.
BtCoV HKU5-SE MA did not cause any significant weight loss in
young mice, but it caused �20% weight loss in aged mice
(Fig. 6A). The virus titers in lungs were significantly increased in

young and aged animals at days 2 and 4 p.i. (�107 PFU/g and
~106 PFU/g, respectively) (Fig. 6B). Although young animals did
not exhibit any significant increases in pathology compared to
that in mice inoculated with nonadapted strains (Fig. 3D), all aged
animals developed acute interstitial pneumonia with fibrin depo-
sition and hyaline membrane formation (Fig. 6C). Genome se-
quencing in comparison to the sequence of the parent virus re-
vealed changes in the nsp13, nsp14, ORF5, and ORF7 (M) genes as
a result of mouse adaptation (Fig. 7A and B, top). It was notewor-
thy that a frameshift mutation resulted in a truncated ORF5 poly-
protein (insertion of nucleotide G between 26,897 and 26,898 bp)
(Fig. 7B, top). Furthermore, virus was also detected in blood at
2 days p.i. (4 � 105 PFU/ml), but not in any other organs tested
(brain, liver, and spleen) (Fig. 7B, bottom).

DISCUSSION

A recent study by Anthony et al. estimates the presence of approx-
imately 320,000 different viruses circulating in mammalian zoo-
notic reservoirs that have the potential to cross the species barrier
and to emerge as new human pathogens (13, 31). Among corona-
viruses, high RNA recombination frequencies coupled with the
existence of interchangeable S domains suggest that some zoo-
notic strains are likely poised for cross-species transmission events

FIG 6 BtCoV HKU5-SE MA replication in young and aged BALB/c mice. (A) Weight loss curves of young (10-week-old) and aged (1-year-old) mice infected
intranasally with 1 � 105 PFU of BtCoV HKU5-SE MA through 4 days p.i. (B) Viral titers in lungs of mice at days 2 and 4 p.i. Error bars indicate SD. (C)
Representative H&E-stained sections of lungs from a young and an aged mouse harvested at 4 days p.i., showing severe inflammatory infiltration and hyaline
membrane formation (black arrow) in the aged mouse.
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into human populations (3). This study articulates a strategy that
would enable rapid development of therapeutics and targeted
evaluation of vaccines against future emerging zoonotic CoVs. A
biopreparedness platform that includes panels of recombinant
alpha-, beta-, and gammacoronaviruses for targeted therapeutic
and vaccine evaluations can provide a strategy for rapidly identi-
fying drugs with therapeutic potential against future emerging
zoonotic CoVs. Previous studies have shown that the feline and
murine S ectodomains and/or the S RBDs of the group 2b CoV S
glycoproteins are interchangeable (16, 19). As preemergent SARS-
like CoV group 2b strains with broad ACE2 receptor specificities
have recently been isolated from bats (11), it seems likely that
similar group 2c strains exist that have broad host range pheno-
types as well. In addition, the antigenic distances and minimal
cross-neutralization phenotypes seen across and within group 2b
and 2c strains (21) demonstrate an inherent vulnerability in cur-
rent vaccine and therapeutic design strategies, which focus on
single emerging isolates for control purposes. Rather, the syn-
thetic resurrection of the group 2b HKU3 strain Bat-SRBD (which
has the spike RBD from SARS-CoV) (16) and, here, the MERS-
CoV-like group 2c BtCoV HKU5-SE isolate provide crucial re-
agents for identifying broad-spectrum antivirals while addressing

targeted issues in vaccine design. BtCoV HKU5 and MERS-CoV
share high sequence identity across important replicase protein
targets (7, 14, 32). As most zoonotic viruses are difficult to culture
and usually exist as sequence signatures in repository databases,
the advent of synthetic biology has provided an approach for res-
urrecting representative strains from these highly heterogeneous
pools (16, 33, 34). Consequently, the potential risks versus bene-
fits of these experiments and the plans for containment of the
recombinant viruses were discussed in detail with the University
of North Carolina Institutional Biosafety Committee in advance
of these experiments.

Similar to our previous results with the subgroup 2b BtCoV
strain HKU3 (16), the recombinant BtCoV HKU5 replicated but
did not spread efficiently between cells, suggesting an entry block.
This observation could reflect a low level or lack of appropriate
receptor expression and/or other critical entry cofactors, such as
cathepsins or TMPSSR2 proteases (35). Using a chimeric BtCoV
HKU3 virus, we have previously demonstrated that the RBD of
SARS-CoV S protein alone is sufficient for binding to mouse
ACE2, enabling virus replication in mice (36). Inclusion of the
mouse-adapted Y436H substitution in S (37) enhanced BtCoV
HKU3 virus replication but not disease severity in aged-animal

FIG 7 BtCoV HKU5-SE MA genome sequence. (A) Schematics of BtCoV HKU5-SE, depicting all open reading frames (ORFs) (top) and the mouse-adapted
mutations as red stick-and-ball symbols at indicated spots in the genome (bottom). (B) Details of the mouse adaptations at the nucleotide and amino acid levels
(top), and analysis of viremia in BtCoV HKU5-SE MA-infected aged (1-year-old) BALB/c mice (bottom).
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models (16). In SARS-CoV recombinant viruses, S amino acid
substitutions are sufficient to produce severe disease in aged
BALB/c mouse models (20). In BtCoV HKU5, our attempts to
replace the putative HKU5 RBD with the SARS-CoV RBD were
unsuccessful, most likely reflecting the high antigenic distance and
structural incompatibilities that hinder genetic exchange of some
domains between subgroup 2b and 2c S glycoproteins. Supporting
earlier work with mouse hepatitis virus and feline coronavirus
(19), we introduced the SARS S glycoprotein ectodomain with the
Y436H substitution into the BtCoV HKU5 genome (BtCoV
HKU5-SE), and a recombinant chimeric virus was isolated that
was capable of productive infection in culture and in young and
aged BALB/c mice.

BtCoV HKU5-SE replicated efficiently in multiple cell types
and used mouse ACE2 for entry into mice. The virus replication
efficiency was reduced in interferon-competent Calu3 cells but
not in Vero cells, similar to the results for SARS-CoV, suggesting
the possibility of limited control by cell-intrinsic immune mech-
anisms as reported with SARS-CoV (38). Of interest, the ORF4b
genes of group 2c strains like HKU5 and MERS-CoV are closely
related and encode interferon antagonist activities, as detected
using reporter assays (39). Using reverse genetics, our group and
others have deleted these interferon antagonists from MERS-CoV
(40, 41), with little to no effect on virus growth in vitro. The BtCoV
HKU5-SE molecular clone would enable the dissection of related
interferon antagonist activities in accessory ORFs of other group
2c CoVs, identifying common and unique pathways for regulating
innate immune responses in human cells. It is noteworthy that
ORF5 is not essential for the replication of either MERS-CoV or
BtCoV HKU5-SE.

In infected cells, eight subgenomic mRNAs were detected by
Northern blot assay, consistent with the predicted ORFs in Gen-
Bank and indicating successful replication and transcription.
Most CoVs, including BtCoV HKU5, MERS-CoV, and SARS
CoV, use a consensus ACGAA transcriptional regulatory sequence
(TRS) start site, and the availability of a full panel of infectious
clones will allow us to engineer a recombination- and reversion-
proof genome by rewiring the TRS sites, as previously described by
our group (42). The N and S glycoproteins were recognized by
their respective polyclonal sera. Cross-reactivity was noted be-
tween BtCoV HKU5-SE, BtCoV HKU4, and MERS-CoV N pro-
teins, demonstrating some conservation of antibody epitopes be-
tween the different strains. These data suggest that recombinant N
proteins and N-specific antisera can be used as diagnostic reagents
for serologic testing of human sera or direct detection of MERS-
CoV and other group 2c CoV antigens in tissues.

The BtCoV HKU5-SE virus contains an authentic set of sub-
group 2c replicase, accessory, and other structural proteins, pro-
viding a robust platform for evaluating the breadth of activity of
antiviral drugs against the group 2c CoVs. Among the Coronaviri-
dae, nsp5 (3CLpro) inhibitors have been shown to be successful in
inhibiting SARS-CoV replication in vitro (22, 23). Using biochem-
ical assays, the candidate drug GRL-001 inhibits MERS-CoV and
BtCoV HKU5-SE nsp5 protease activity (24) and reduces MERS-
CoV and BtCoV HKU5-SE replication by over 100-fold in vitro.
Although an intact monolayer was observed in drug-treated cells
at 36 h p.i., the virus titers were reduced only 10-fold. Similar
differences have been reported for coronavirus papainlike pro-
tease (PLP) inhibitors (43). The drug might be slowing down the
virus growth cycle and retarding the development of cytopathic

effect (CPE). In addition to blocking the effects of 3CLpro, GRL-
001 might interact with other host proteins activated during virus
infection and prevent cell death. Nevertheless, its broad therapeu-
tic action against distant group 2c CoVs supports the hypothesis
that GRL-001 is an effective inhibitor of 3CLpro activities in mul-
tiple subgroup 2c CoVs, providing a potential candidate drug for
future outbreaks. It is likely that GRL-001 will require modifica-
tions to improve its durability, biodistribution, and potency in
vivo.

BtCoV HKU5-SE caused disease in aged but not young BALB/c
mice, leading to 10% weight loss by 4 days p.i. In contrast to other
coronaviruses, such as mouse hepatitis virus, which can still rep-
licate and produce disease in carcinoembryonic antigen-related
cell adhesion molecule 1-deficient (CEACAM1�/�) animals (44),
the replication and pathogenesis of BtCoV HKU5-SE was com-
pletely dependent upon the presence of the mouse ACE2 receptor,
as the ACE2�/� mice clearly showed no weight loss or evidence of
virus replication. Furthermore, the presence of viral antigen in
small airway epithelial cells and in alveolar cells with morphology
like type II pneumocytes is characteristic of tropisms reported
during SARS-CoV infection in mice and primates (25, 45). Histo-
pathologic examination demonstrated interstitial pneumonia in
only a few aged animals, replicating phenotypes seen after infec-
tion with wild-type and mouse-adapted strains of SARS-CoV in
humans and mice (20, 25). The basis for age-related disease phe-
notypes following SARS-CoV infection has been linked to altera-
tion in prostaglandin expression in lungs that impairs dendritic
cell migration, resulting in a diminished T cell response (46). Fur-
ther studies are needed to evaluate the basis for the increased Bt-
CoV HKU5-SE pathogenesis in the aged-animal models.

Mouse adaptation of BtCoV HKU5-SE resulted in increased
viral replication and greater virulence in aged mice. Additionally,
animals developed interstitial pneumonia with hyaline membrane
formation. Mutations in nsp13, nsp14, ORF5, and ORF7 (M)
genes were associated with increased virulence phenotypes in aged
mice. Interestingly, evolution in the nsp13, nsp14, and M genes
was also reported following SARS-CoV passage in mice (20, 25,
47) and humans during the expanding epidemic, which suggests
that they play critical roles in cross-species adaptation, replication,
and pathogenesis (48).

Importantly, the BtCoV HKU5-SE chimera was fully suscepti-
ble to a SARS-CoV S-based vaccine, and polyclonal serum raised
against SARS-CoV S completely neutralized the virus in vitro. The
difference in neutralization titers between young and aged ani-
mals likely reflects the gradient of immune response that occurs in
aged animals following emerging CoV infections (49). These data
demonstrate that the S glycoprotein retains key neutralization
epitopes critical for protective immunity (16). In contrast, none of
the VRPs expressing S proteins from BtCoV HKU4, BtCoV
HKU5, or MERS-CoV conferred protection in vivo, demonstrat-
ing the divergence between other group 2b and 2c CoV S proteins.
These findings argue that vaccine design for any novel emerging
CoV should involve S protein from the respective virus or a chi-
meric multivalent vaccine containing neutralizing epitopes from
the S proteins of different CoVs.

Previous studies from our laboratory and others have indicated
that animals immunized with vectored or inactivated SARS-CoV
N-containing vaccines develop an immune-mediated pathology
in the lungs following homologous or heterologous challenge,
reminiscent of RSV vaccine-mediated immune pathologies (27,
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28). This immune pathology is characterized by high numbers of
eosinophil infiltrates in the lungs postchallenge (28). Our results
demonstrate that VRP vaccines expressing MERS-CoV N did not
elicit an eosinophilic immune pathology following BtCoV
HKU5-SE challenge, as reported with inactivated SARS-CoV vac-
cines (27). In contrast to alum, which causes a Th2-skewed im-
mune response (27), VRP vaccines induce a robust Th1 immune
response and high neutralizing antibody titers (15, 27). Although
these studies should be interpreted with some caution, the effects
of inactivated MERS-CoV and BtCoV HKU5-SE vaccines in in-
duction of eosinophilia following challenge remain to be tested.
VRP vectors have been proven successful in human clinical trials
(50, 51), and VEE virus replicates successfully in several animal
species, including horses, goats, and sheep (52). Given the high
seroprevalence of MERS-CoV in camels and the potential role of
camels as intermediate reservoirs for human disease (53), the VRP
platform described here may be an effective MERS-CoV vaccine
candidate for use in camels and other reservoir species.

The development of infectious clones and recombinant viruses
from emerging zoonotic CoVs will expedite the rapid testing of
antivirals and vaccines in an outbreak situation. A limitation of
the current approach is that wild-type MERS-CoV and BtCoV
HKU5 do not replicate in mice. The recent demonstration of the
MERS-CoV S glycoprotein bound to its receptor may inspire
strategies for designing recombinant MERS-CoV strains that rep-
licate well in mice (54). Using BtCoV HKU5-SE, we illustrate the
utility of synthetic genomics and reverse genetic strategies for res-
urrecting emerging zoonotic viruses in vitro and validate our find-
ings using drugs and vaccines that can be readily applied in out-
break situations.

MATERIALS AND METHODS
Viruses, cells, and plaque assays. BtCoV HKU5-SE, MERS-CoV Hu/
England-N1/2012, and MERS-CoV Hu/SA-N1/2012 were cultured on
Vero 81 cells and grown in Dulbecco modified Eagle medium (Gibco, CA)
with 5% Fetalclone II (Hyclone, South Logan, UT) and gentamicin-
kanamycin (Gibco, Carlsbad, CA). Growth curves in Vero and Calu-3
cells were performed as previously described (55). All virus cultivation
was performed in a biosafety level 3 (BSL3) laboratory with redundant
fans in biosafety cabinets (18, 20). All personnel wore powered air-
purifying respirators (3M Breathe Easy) and Tyvek suits, aprons, and
booties and were double gloved.

Generation of polyclonal mouse antisera, neutralization assays, and
Western and Northern blot analyses. Genes encoding the CoV S and N
proteins indicated above were synthesized by Bio Basic, Inc. (Ontario,
Canada) and were packaged into Venezuelan equine encephalitis (VEE)
virus replicon particles (VRPs) under BSL2 conditions using attenuated
VEE virus 3526 structural protein helpers. Following vaccination, mouse
polyclonal sera were generated in BALB/c mice, and neutralization assays
involving MERS-CoV isolates and SARS-CoV and using mouse antisera
were performed as described previously (49). For Western blotting, ly-
sates from cells infected with BtCoV HKU5-SE or MERS-CoV isolates
were prepared at 12 h p.i. as described previously (36). The blots were then
probed using the mouse polyclonal sera indicated above. Vero cells inoc-
ulated with BtCoV HKU5-SE were harvested at 12 h p.i. with TRizol
reagent (Invitrogen). Northern blot analysis to describe the genome- and
subgenome-length RNAs was performed using a probe for the N gene as
described previously (37).

Systematic assembly and recovery of full-length infectious clones of
BtCoV HKU5 variants. The BtCoV HKU5 molecular clone was designed
based on a consensus sequence of BtCoV HKU5 isolates available in Gen-
Bank (nucleotide sequence accession number EF065512.1). The gene en-
coding the BtCoV HKU5 S protein (ORF2) was also replaced with the

full-length ectodomain of the SARS-CoV S protein (residues 1 to 1190)
using previously described strategies (16, 19). The mouse-adapted substi-
tution Y436H in the SARS-CoV spike protein (20, 25) was also included in
the chimeric S construct to promote replication in mice. This clone was
designated BtCoV HKU5-SE. The wild-type virus and chimeric BtCoV
HKU5 E fragments were synthesized by Bio Basic, Inc. (Ontario, Canada)
as six contiguous cDNAs. After assembly and in vitro transcription, re-
combinant virus was recovered on Vero cells through transfection of the
full-length transcripts, as previously described in detail (16, 18).

Biosafety statement. Synthetic reconstruction of BtCoV HKU5 and
BtCoV HKU5-SE was approved by the University of North Carolina IBC
(Institutional Biosafety Committee), which also reviewed possible dual
use research concerns before these experiments were undertaken. The IBC
also examined the manuscript before submission.

BtCoV HKU5-SE replication and serial passage in mice. Young (10-
week-old) and aged (1-year-old) BALB/c mice purchased from Harlan
Labs were intranasally inoculated with a 50-�l volume containing 1 � 105

PFU of BtCoV HKU5-SE virus. Infected animals were monitored for
weight loss, morbidity, and clinical signs of disease, and lung titers were
determined by plaque assay. Adaptation to mice was conferred by serial
passage in lungs of young BALB/c mice (10 weeks old) at 2-day intervals
p.i. as has been described in detail previously (25). Animal housing, care,
and experimental protocols were in accordance with University of North
Carolina Institutional Animal Care and Use Committee (IACUC) guide-
lines.

Immunohistochemistry. Lungs from mice infected with BtCoV
HKU5-SE were harvested at 2 and 4 days p.i. in 10% formalin and were
fixed for 7 days before removal from the BSL3. Paraffin-embedded tissues
(5 �M) were sectioned and stained with hematoxylin and eosin stain, and
lung sections were blind scored for pathological changes. Staining of viral
antigens was performed as described previously (25), using polyclonal
serum to the HKU5 N protein.

VRP-based S and N vaccination experiments. Young (~5- to 6-week-
old) and aged (~1-year-old) mice received, in the left footpad, a prime and
a boost of 105 PFU of different VRP-based S or N vaccines or Venezuelan
equine encephalitis virus adjuvanted particles (VAP) which expressed no
transgene as a mock-infection control, with a 3-week interval between the
prime and the boost. At 3 weeks after the boost, the animals were moved
into the BSL3 facility and allowed to acclimate for 1 week. Then, they were
challenged with BtCoV HKU5-SE. All young animals were ~13 weeks, and
aged animals were 14 months old at the time of challenge.

Flow cytometry. Young BALB/c mice that were mock immunized
with 105 infectious units of VAP (expresses no transgene) or vaccinated
with VRP encoding BtCoV HKU5 N or MERS-CoV N were challenged
with 1 � 105 PFU of BtCoV HKU5-SE. The animals were weighed and
monitored for clinical symptoms daily. On day 4 p.i., mice were sacrificed
by isoflurane inhalation, and viable cell populations from the lungs were
prepared, stained with appropriate antibodies, and sorted using flow cy-
tometry as previously described in detail (27).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org
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