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FIG 4 Phylogenetic distribution of SspBCD homologs. The phylogenetic tree of SspBCD in 2,678 strains was built using MEGA X 11.0 with
different genera colored accordingly. The strains shaded purple, pink, blue, and green indicate that SspBCD is accompanied by SspFGH, SspE,

both, or none, respectively. For clarity, strain names are also provided in Table S2 in the supplemental material.

inhibit DNA methylation, restrict insensitivity, and synthesize one or more proteins
required for complete transfer of the remaining portion of DNA (28). In addition to
SspE and SspFGH, phage T5 has been found to be unsusceptible to defense by restric-
tion endonucleases, including EcoRI, EcoK, and EcoPl, despite the presence of restric-
tion sites in its genome (29).

In summary, we have identified a new type of PT-based defense system in which
SspABCD catalyzes ssDNA PT modification and SspFGH introduces damage to non-PT
DNA and consequently impairs phage DNA replication. Given the wide distribution of
PT-based SspFGH defense systems and their coexistence with SspE within some bacte-
ria, our study highlights the diversity of PT-based antiphage mechanisms and expands
our knowledge about the arsenal of defensive measures.

MATERIALS AND METHODS

Bacterial strains, plasmids, phages, and growth conditions. All the bacterial strains, plasmids, and
phages used in this study were listed in Table S1 in the supplemental material. Vibrio strains were grown
in tryptic soy broth (TSB) or on agar plates at 28°C as previously described (12). E. coli strains were cul-
tured in Luria-Bertani (LB) broth or on agar plates at 37°C. E. coli cells expressing Vibrio genes were cul-
tured at 28°C. When necessary, selective antibiotics (100 ug/ml ampicillin or 25 ug/ml chloramphenicol)
were added to the medium.

Plaque spot assays. After overnight incubation, the JM109 cells were diluted in LB broth at a ratio
of 1:100 (vol/vol), and the optical density at 600 nm (OD,,) was monitored until it reached 0.6. An ali-
quot of the cell culture (500 wl) was mixed with 5 ml of molten 0.75% top agar and spread on a prepre-
pared 1.5% LB agar plate to grow a bacterial lawn. Tenfold serial dilutions of phages were prepared in
SM buffer (100 mM NaCl, 8 mM MgSO,, and 50 mM Tris-HCl, pH 7.5), and 2 ul of each dilution was spotted
onto the cell lawn. Images of plaques were taken after incubation at 28°C for 16 h.
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FIG 5 Schematic representation of the dsDNA and ssDNA phosphorothioate-based defense systems.
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Efficiency of plaquing. Phage PFU were quantified using the double-agar-layer technique by mixing
100 ul of phage with 200 ul of bacterial culture (ODy,, of 0.6). Individual plaques were counted after 16
h of growth at 28°C. EOP was determined as PFU per millilter (JM109 expressing iscS-sspBCD-sspFGH
module and derivatives)/PFU per milliliter (JM109 containing empty vectors).

Adsorption assay. E. coli IM109 expressing or lacking the iscS-sspBCD-sspFGH genes was grown in
LB broth at 28°C to an ODy,, of 0.4. Then, phage T4 was added at a multiplicity of infection (MOI) of 1.
Bacterial liquid mixed with phage was cultured with shaking at 28°C. An aliquot of 1 ml culture was
taken at 1, 5, 10, 15, 20, and 25 min after infection. Then, the bacteria were centrifuged at 10,000 x g
for 1 min to precipitate. Phages that had not yet been taken up by the cells were taken from the su-
pernatant, and the number of phages was measured by the plate experiment. The percentage of
extracellular phage T4 was calculated assuming the initial titer of T4 (without added JM109 cells) to
be 100%.

TUNEL assay. TUNEL assay was applied for detection of DNA damage using the one-step TUNEL
apoptosis assay kit (Beyotime, China) according to the manufacturer’s instructions. In brief, the
JM109 cells were collected by centrifugation at 13,000 x g for 2 min, washed once with phosphate-
buffered saline (PBS), resuspended in 1 ml of fixing solution (4% paraformaldehyde in PBS) and incu-
bated for 40 min at 28°C. Cells were washed three times with PBS and then pelleted again by centrifu-
gation, resuspended in 1 ml of permeabilization solution (0.3% Triton X-100 in PBS), and incubated
for 40 min at 28°C. At the end of the incubation, cells were resuspended in 50 ul of the TUNEL reac-
tion mix from the kit and incubated at 37°C in the dark for 70 min. The reaction mix contains TdT,
FITC-labeled dUTP, and buffers. Cells were washed three times with PBS and then resuspended in
500 ul of PBS for flow cytometry.

Southern blot assays. After overnight incubation at 28°C, the JM109 cells containing iscS-sspBCD-
sspFGH or empty vectors were diluted in LB broth at a ratio of 1:100 (vol/vol) and cultured to an ODy, of
approximately 0.6, followed by infection by phage T4 at an MOI of 6. Total DNA was extracted from
infected cells collected throughout the phage infection time course using the chloroform-phenol
method. A total of 2 ug intracellular DNA was digested by Pacl for 6 h followed by electrophoresis on a
1% agarose gel. The gel was transferred to an Amersham Hybond-N+ nylon membrane (GE Healthcare)
in 20x SSC buffer (0.3 M trisodium citrate and 3 M NaCl, pH 7.0). Subsequent procedures, including blot-
ting, washing, and signal detection, were performed using the DIG-High Prime DNA labeling and detec-
tion starter kit Il (Roche) according to the manufacturer’s protocol.

Fluorescence microscopy. JM109 cells containing different plasmids were collected by centrifuga-
tion (5,000 x g, 5 min), washed three times with PBS (pH 7.4), and resuspended in an appropriate volume
of PBS. Ten microliters of the cell suspension was spread on a glass slide, dried at room temperature,
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and fixed with drops of methanol for 5 min. After fixing, the slide was washed six times with tap water
and then dried completely at room temperature. Then, 10 ul of poly-L-lysine (5 mg/ml in distilled water)
was applied to fix cells tightly to the slide. DAPI solution (10 ul of 4’,6-diamino-2-phenyl-indole at a con-
centration of 5mg/ml in PBS buffer) was spread over the sample and incubated for 5min at room tem-
perature. Ten microliters of FM4-64 (2 mg/ml in distilled water) was subsequently dropped onto the cell
sample. The cells were viewed with a Nikon A1 confocal system. DAPI and FM4-64 were observed using
excitation wavelength 405 nm (Ex405) and Ex561 laser filters, respectively.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 1.7 MB.
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