
















superdomain, which, to some extent, disrupts the strictly organized centromere/telo-
mere-dependent nuclear architecture. Such a defect may trigger alteration of local
chromatin environment and gene expression, particularly for those genes which are
highly dependent on the local chromatin structure, i.e., variant genes (13, 14).

To address whether the different transcriptomes of Pfhmgb1-KO parasites are the
result of histone modification (HM) alteration upon the loss of PfHMGB1, we first exam-
ined the changes of HM signals at a three-dimensional organization. Similar to our
result of gene expression, both H3K9ac and H3K9me3 remained largely at the same
distribution profile along the centroid of telomeres upon Pfhmgb1 KO (Fig. S7B and C).
However, there were variations in HM signal at some local genomic regions. Based on
this result, we then examined the changes in HM signal at the promoter regions of
those dysregulated genes. The upregulated genes displayed a significant reduction in
H3K9me3 enrichment at promoter regions, whereas the downregulated genes showed
a significant decrease in H3K9ac signals at the promoter region in the Pfhmgb1-KO
clone (Fig. 5C). For instance, the H3K9ac level was dramatically downregulated at the
upstream region of the var0412700 gene locus in the Pfhmgb1-KO clone (Fig. S7D). These
results suggest that the chromatin microenvironment accounted for the changes of
transcriptional activities of these genes, while the global histone modification profile
remained largely unchanged. Consistently, this originally expressed var gene in the WT
3D7-G7 clone exhibited elevated interactions with the telomere cluster when it was
silenced in the Pfhmgb1-KO clone (Fig. 5D, left). On the contrary, the newly expressed
var gene (var0712600) in the Pfhmgb1-RC clone exhibited a significant reduction in inter-
actions with the telomere cluster compared to that in the Pfhmgb1-KO clone (Fig. 5D,
right).

FIG 4 Loss of PfHMGB1 diminishes the centromere interactome. (A) Significant interactions among centromeres in
WT, Pfhmgb1-KO, and Pfhmgb1-RC clones. Red lines represent interactions among genomic features. Interactions
among centromeres were obviously reduced in Pfhmgb1-KO strain and back to the wild-type level in the Pfhmgb1-RC
strain. (B) Statistical chart for interaction frequency among centromeres. Lines and error bars represent medians and
95% confidence intervals (CIs), respectively. Wilcoxon test, ***, P# 0.001; NS, no significant change. (C) Significant
interactions among telomeres in the WT and Pfhmgb1 KO. Red lines represent interactions among genomic features.
There is no significant change in interactions among telomeres between WT and Pfhmgb1-KO strains. (D) Statistical
chart for interaction frequency among telomeres. Lines and error bars represent medians with 95% CIs. Wilcoxon test,
NS, no significant change.
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DISCUSSION

In addition to those general transcriptional factors such as the TATA-binding pro-
tein (TBP) and RNA polymerase-associated TFs, there are two groups of DNA-interac-
tion factors associated with either specific DNA sequences or DNA structures involved
in transcriptional regulation in eukaryotic organisms (40, 41). In the human malaria par-
asites, few DNA-binding TFs have been identified so far (35, 42). The major class of
transcriptional regulators is the apicomplexan AP2 (ApiAP2) protein family. Among
these, a small number of ApiAP2 factors (PfSIP2, AP2-exp, and AP2-Tel) have been
shown to be involved in the formation of telomeric heterochromatin structures or in
the mutually exclusive expression of variant genes (36). Here, we describe another
layer in the complex epigenetic mechanism of variant gene expression in addition to
histone modification-based local chromatin alteration. PfHMGB1 is, to our knowledge,

FIG 5 Defects of genomic organization alter local chromatin environment. (A) 3D genome modeling of WT, Pfhmgb1-
KO, and Pfhmgb1-RC clones. Centromeres are indicated with red spheres and telomeres with blue spheres (See Video
S1 for panoramic view). (B) Statistical charts for 3D distance among centromeres (left) and telomeres (right) in different
clones. Lines and error bars represent medians with 95% CIs. Wilcoxon test, ***, P# 0.001; *, P# 0.05; NS, not
significant. (C) H3K9ac and H3K9me3 ChIP signal at upregulated gene loci and downregulated gene loci in Pfhmgb1-
KO versus WT strains at ring. P values are for the Wilcoxon test. (D) Interaction frequencies of the telomere cluster with
var0412700, which is originally actively transcribed in WT clone (left), or with var0712600, which is activated in the Pfhmgb1-
RC clone (right). Lines and error bars represent medians with 95% CIs. Wilcoxon test, *, P# 0.05.
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the first architectural factor regulating virulence gene expression identified and offers
mechanistic insight to the biological role of the 3D genome structure of the malaria
parasite described recently.

In yeast and metazoan cells, the high-mobility-group (HMG) superfamily is a class of
abundant nonhistone proteins involved in gene regulation via interaction with the AT
hook (HMGA subgroup), with the nucleosomes (HMGN subgroup), or with HMG box
DNA-binding domains (HMGB subgroup) (43). These HMG proteins are able to regulate
gene transcription directly by binding to cruciform or distorted DNA sequences as
DNA chaperones and through the induction of DNA bending, thereby influencing the
accessibility of nucleosomes by TFs (44). The orthologue of HMGB1 in yeast, Nhp6A,
affects nucleosome dynamics and gene transcription by binding to the promoters of
discrete gene groups. Moreover, it has recently been reported that HMGB2 regulates
an early event on the path to replicative senescence by binding chromatin at TAD
boundaries to control heterochromatic and transcriptional remodeling in primary
human cells, revealing another pathway by which 3D nuclear organization regulates
gene expression (27). However, although we have identified a panel of PfHMGB1-bind-
ing target genes at their upstream regions in P. falciparum, the transcriptional activities
of these genes are not directly controlled by this factor. A recent study also shows that
PfHMGB1 is not present in the protein complex binding to var gene loci (45).
Therefore, differential expression of those genes in the Pfhmgb1-KO line is a conse-
quence of nuclear reorganization. Most of them belong to heterochromatic genes and
experience local chromatin alteration at their promoter regions. These data strongly
suggest that PfHMGB1 is an architectural factor involved in the dynamics of nuclear
structure instead of a transcription factor.

Other DNA-binding factors such as CenH3 may cooperate with PfHMGB1 to regu-
late this centromere structure. It is also possible that HP1 and other telomere-asso-
ciated factors such as PfAP2tel, PfSIP2, and PfTRZ may contribute to the formation
of the heterochromatic telomeric superdomain (10, 36, 46). A coordinated regula-
tory network is required to secure the nuclear organization. Although the two
superdomains occupy opposite zones of the nuclear periphery, reorganization of
centromere clusters can trigger the spread of the heterochromatin environment.
Previously, an opposite phenomenon was observed in studies of the deacetylase
PfSir2 protein. Knockout of this protein results in chromatin alteration at the telo-
mere-proximal regions, i.e., the spread of histone acetylation modification, and
repositioning of var gene loci, thereby activating multiple subtelomere virulence
genes (7, 8). In this case, PfSir2 silences virulence genes via direct binding to the
subtelomeric regions. It maintains the gradated chromatin structure at the telo-
mere-associated regions as a boundary to acetylation modification. PfHMGB1 is
involved in virulence gene expression in a distinct way. In this case, dynamic chro-
mosome organization and chromatin structure are highly associated and coregu-
lated, which secures the strict singular expression of virulence genes. This may par-
tially explain the conversion of the activated var gene in the Pfhmgb1-RC clone. The
highly organized genomic structure provides a supportive environment for var
gene expression, whose disruption silences the var gene family upon Pfhmgb1 KO.
However, activation of the exact var gene requires a more-specific regulating mech-
anism such as Ruf6 or PfSir2, etc., which shall be further investigated. In addition,
PfHMGB1 functions in gene regulation as an architectural regulator and is mainly
associated with virulence genes. This gene expression-related regulatory pathway is
not essential for parasite development but is critical for immune evasion in the
human host.

We used the 3D7-G7 clone to generate the Pfhmgb1 knockout parasite. This clone
expresses relatively stable central var genes. This raises the question regarding
whether all active var genes in other parasite line clones maintain their subnuclear
position at the transition boundary between the centromere and telomere clusters.
While upsC- and upsBC-type var genes are located in the central regions of
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chromosomes, upsA- and upsB-type var genes, which constitute more than half of the
var gene family, are located in subtelomeric regions. One clue comes from the
PfHMGB1-complementary line (Pfhmgb1-RC) in which the newly activated var gene is
still located at the central site of another chromosome. It is of interest, therefore, to
consider how these var genes are released from the transcriptionally repressive telo-
mere superdomain through chromosome reorganization. One possible explanation is
that chromosomally central var genes may be preferentially activated, as their chromo-
somal positions confer them priority for nuclear reposition compared with those of
telomere-associated members. This hypothesis is perhaps supported by the observa-
tion that chromosomally central var genes are more likely to be activated and undergo
lower switching rates in cultures ex vivo and in vitro (47, 48).

MATERIALS ANDMETHODS
Parasite cultivation and transfection. P. falciparum parasites were cultured as described previously

(18). The genetic manipulation (knock-in or knockout) of Pfhmgb1 or PfCenh3 genes was achieved using
the CRISPR-Cas9 gene editing system (31) and was validated by PCR, sequencing, Western blotting, and
IFA. For tagging, the HA-Ty1 or GFP sequences were fused to the C terminus of Pfhmgb1 or N terminus
of PfCenh3, respectively. The resulting vectors were transfected into the 3D7-G7 parasites as described
previously (49). All the nucleotide sequences of sgRNAs or primers are listed in Table S1A in the supple-
mental material.

Flow cytometry. Ring-stage parasites were diluted to 0.5% parasitemia for sampling after every 4 h
in culture. DNA content analysis was carried out for three intraerythrocytic developmental cycles.
Samples (10ml) were fixed in 4% formaldehyde-0.015% glutaraldehyde for 20min. The nuclei were la-
beled by using Hoechst 33342 (Invitrogen, H3570) for 30min. At least 500,000 cells were gated using for-
ward- and side-scatter parameters, and then a second gate was implemented to select infected cells,
according to Hoechst-positive cells. Parasites in different phases were distinguished on the basis of fluo-
rescence intensity. Fluorescence signal data were obtained with a flow cytometer (BD FACS AriaII) and
analyzed by using FlowJo software version 10.2.

Western blotting. RBC-free parasites were isolated with 0.15% saponin treatment and resuspended
in 1� SDS-loading buffer (Bio-Rad) for protein extracts. Proteins were separated by gel electrophoresis,
transferred to a polyvinylidene difluoride (PVDF) membrane, and visualized by exposure to an imaging
device. The antibodies used in this study were mouse anti-Pfaldolase (Abcam), mouse anti-Ty1 (Sigma),
rabbit anti-HA (Abcam), mouse anti-GFP (Abcam) antibodies. Membranes were developed with an
enhanced chemiluminescence (ECL) Western blot kit (GE health care).

Immunofluorescence assays. Immunofluorescence assays were performed as described previously
(18). Parasites at different stages were fixed with 4% paraformaldehyde and deposited on microscope
slides. The dilution for the primary mouse anti-Ty1 antibody was 1:1,000 and for rabbit anti-GFP was
1:5,000, and the second antibodies of Alexa-Fluor-488-conjugated anti-mouse and Alexa-Fluor-568-con-
jugated anti-rabbit were diluted by 1:1,000. Images were captured by using a Nikon A1R microscope at
�100 magnification.

Quantitative reverse transcription-PCR. cDNA was synthesized with random hexamer primers
according to the manufacturer’s instructions (TaKaRa, number 2641A). Primer sequences for var genes
were designed as in previous methods (50). PCR conditions were initial denaturing at 95°C for 30 s, fol-
lowed by 40 cycles of 5 s at 95°C, 20 s at 54°C, 7 s at 56°C, 7 s at 59°C, and 27 s at 62°C. The seryl-tRNA
synthetase gene (PF3D7_0717700) was used as an internal control.

High-throughput sequencing-associated analysis. The technical details of ChIP-seq, RNA-seq, and
Hi-C-seq assays and related detailed bioinformatics analysis are available in Text S1.

Data availability. All raw sequence data reported in this paper have been deposited in Gene
Expression Omnibus (GEO) and are publicly accessible under GEO accession GSE141762.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
VIDEO S1, MOV file, 2 MB.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, TIF file, 1.5 MB.
FIG S2, TIF file, 1 MB.
FIG S3, TIF file, 1.2 MB.
FIG S4, TIF file, 1 MB.
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