










FIG 2 Relationship between the number of 16S rRNA gene copies in a sample and the reproducibility
of the result. (A) Intrareplicate Bray-Curtis distance by sample type. Relationship between the number of
bacterial 16S rRNA gene copies in a sample and the intrareplicate Bray-Curtis distance between replicates
of respiratory specimens and their individual controls. (B) Mean (� SEM) number of 16S rRNA gene copies
per sample by sample type. (C) Concentration of the number of bacterial 16S rRNA gene copies in a
sample plotted against the intrareplicate Bray-Curtis distance between replicates of respiratory speci-
mens and their individual controls. Each value is the mean � SEM.
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combined BAL fluid (CBAL) and the EBC were separable from their controls (Fig. 3A and
B); traditionally, this result would suffice to consider each to have a detectable micro-
biome that could be compared. However, as has been shown, the intrareplicate
distances of technical replicates suggest that noise can play a large role in these
samples. To visualize the effect of this noise on the communities in question, we
plotted each replicate set against the other two for both CBAL and EBC (Fig. 3C and D).
A sample composed of all specific signal and no noise would be expected to have a
perfect correlation between all OTUs detected within each technical replicate (i.e., a
diagonal line across a 3D box of the 3 replicates); in contrast, a sample with only noise
would have no correlation (i.e., data distributed along the axes of the 3D box).
Examination of the CBAL sample (Fig. 3C) shows that, while noise is present, a
consistently reproducible signal exists across all the CBAL samples. The same cannot be
said for the EBC samples, as very few points appear off the axes (Fig. 3D). In this
situation, the standard method of taking the mean of the abundance of community
members would be an inaccurate representation of the community due to the pre-
ponderance of outliers. A more accurate method to assess the reproducible portion of
the community across multiple samples is to take the mean of replicate medians, which
deemphasizes the stochastic noise between samples.

We applied this approach to the EBC and CBAL samples and plotted the results
according to the average rank abundance of the CBAL samples (Fig. 3E). The EBC
samples both lacked consistent community structure and did not resemble the CBAL
samples (Fig. 3E, top). In contrast, across all CBAL samples, we reproducibly observed
30 to 40% of the BAL fluid community to be made up of Prevotella spp. and Veillonella
spp., with smaller but real abundances of other community members (Fig. 3E, bottom).
This is an important and validating finding, as Prevotella spp. and Veillonella spp. have
been found to be dominant community members in most lung microbiome studies.
Neither sample set appeared to be significantly affected by reagent contamination
(Fig. 3E, insets).

DISCUSSION

Collectively, our data analyzing both a defined bacterial community and real human
clinical samples demonstrate that (i) stochastic noise occurs in real-world samples of
low bacterial biomass; (ii) below a total of 104 copies of 16S rRNA gene in a sample (as
determined by droplet digital PCR), one needs to worry about noise dominating real
sequences; (iii) critical examination of the composition of technical replicates can be
used to separate signal from noise; and (iv) EBC is not a satisfactory sample for sampling
lower respiratory bacterial microbiota from healthy individuals using the sequencing
method that we tested.

These data extend the now-foundational study by Salter and colleagues (15), which
demonstrated that when low-biomass samples are being sequenced, failure to se-
quence relevant controls simultaneously can cause even the most carefully designed
study to be skewed by DNA contamination within reagents. The current study dem-
onstrates that stochastic sequencing noise is an additional critical element to consider
when low-biomass samples are being sequenced, as it can produce results that can be
easily mistaken for real signal. We show that quantifying 16S rRNA gene copy number
before sequencing can determine which samples will be most susceptible to being
dominated by noise. To that end, we recommend that any sample containing �105 16S
rRNA gene copies/sample be treated as likely to be significantly affected by noise.
Furthermore, because sequencing of technical replicates allows one to set up a
necessary baseline (20), replicate sequencing of vulnerable samples can efficiently allow
one to differentiate real signal from noise and can aid in detecting contaminants.

Replicate sequencing also introduces an element of precision into an analysis that
frequently possesses no true negative controls. Sequencing techniques cannot prove
that a sample for microbiome analysis is negative (i.e., contains absolutely no microbial
DNA). However, one can say within precision of x number of replicates (e.g., three) that
no consistent signal was found. Using this approach, which must obviously balance
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FIG 3 Comparison of the representation of the lung microbiome in EBC versus CBAL. (A) Principal component analysis (PCA) graph depicting CBAL
samples (red) and scope prewash controls (blue). (B) PCA graph depicting EBC (red) and EBC controls (blue). (C) 3D scatterplot of CBAL sample OTU
abundances, where each replicate is plotted on a separate axis. Common signals between each replicate should appear along the diagonal of the 3D box.

(Continued on next page)

Erb-Downward et al. ®

May/June 2020 Volume 11 Issue 3 e00258-20 mbio.asm.org 8

 on O
ctober 25, 2020 by guest

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


degree of precision versus cost, we concluded that EBC is a poor sample for 16S rRNA
gene assessment. We base this conclusion not on an assertion that it was negative or
that it did not differ from its controls but on the fact that within the number of
replicates that we ran on each sample, we were unable to find a consistent signal. This
approach should be applied to other low-biomass sample types that remain contro-
versial, such as peripheral blood and placenta (21).

Our data suggest that the origin of this stochastic noise is related to the sequencer
itself, most likely due to underloading of the flow cell and very low cluster densities.
While future studies will be needed to uncover the specific problems within the system,
it is not hard to imagine a situation where the weak signal produced from very low
cluster densities could result in an increase in the sensitivity (gain) of the detectors,
causing an increase in detector noise and cross talk between channels. Likely added to
these problems is the sum of many sample-side low-frequency events, such as PCR
error (22), index switching (17), and chimera formation (22), each of which likely is
magnified in the absence of a strong signal. Indeed, while this study employed
state-of-the-art methods for error reduction for sample processing, it seems very likely
that the error associated with the above-mentioned factors is different, and likely
higher, under low-biomass conditions (23). However, we do not believe that differences
in these sources of error alone can explain the extent of the irreproducible differences
seen in the low-biomass context. Changes in the overall error rate could be monitored
by following replicate dilutions of a mock community, but this cannot separate the
factors contributing to the errors. Changes in the frequency of index switching could
potentially be monitored by using a combination of sample replication using standard
dual indexing barcodes compared to the unique dual index barcodes (17). A recent
study identified well-to-well contamination as a likely contributor to the unexpected
sequencing results (18); however, the extent of the effect varied greatly depending on
library preparation method, run, and location, so it is unlikely that well-to-well crossover
would be the only noncontamination cause of sequencing noise. Regardless of the
cause, the methods for identifying and dealing with noise described here should
improve reproducibility. An interesting corollary to the idea that the noise is
associated with the sequencer is that running the same samples on a sequencing
platform based on a different underlying technology, such as Oxford Nanopore
Technologies MinION, would result in a completely different behavior from se-
quencing controls and low-biomass amplicons. In summary, low-biomass sequenc-
ing experiments push the lower limits of sequencers’ capacity to detect signal
accurately, so it should be unsurprising that they exceed the threshold of noise that
exists in every detection system.

Conclusions. We have identified a stochastic sequencing noise which occurs in
low-biomass samples and which is experimentally separable from reagent contamina-
tion. Additionally, we identified the range of bacterial DNA concentrations beyond
which technical replicates, although expensive, are likely to aid in separating signal
from noise and hence improve confidence in results. Finally, we tested these methods
on respiratory samples and used our knowledge of sequencing noise to inform our
decision that EBC is a poor sample to assess the lung microbiota.

MATERIALS AND METHODS
Pseudomonas aeruginosa DNA dilutions. We obtained cells for isolation of bacterial DNA by growing

P. aeruginosa strain PAO1 in a 125-ml disposable plastic Erlenmeyer flask containing 20 ml LB broth, which
was agitated overnight on an orbital shaker at 125 rpm in a 37°C incubator. Three 1-ml aliquots, collected in
2.0-ml dolphin-nose microcentrifuge tubes, were spun down in a microcentrifuge at a relative centrifugal

FIG 3 Legend (Continued)
Drop lines anchor the points to a position in the x-y plane, whereas color reflects higher abundances along the z axis. (D) 3D scatterplot of EBC sample
OTU abundances, where each replicate is plotted on a separate axis. Drop lines anchor the points to a position in the x-y plane, whereas color reflects
higher abundances along the z axis. (E) Rank abundance plots of the means of replicate medians of EBC (top) compared to CBAL fluid (bottom). Plots are
ordered according to the mean abundances of the CBAL samples. Insets are the sample controls (EBC control and scope prewash control, respectively)
ordered by mean abundances of CBAL samples. Bars show means of replicate medians � SEM and are colored by the phylum of the OTU.
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force (rcf) of 18,000 at 4°C for 30 min, after which the supernatant was discarded. Each tube was then
subjected to DNA extraction using a separate DNeasy kit from Qiagen (MD, USA) according to manufacturer
protocols with minor modifications (19) and with the addition, after resuspension of the bacterial pellet in lysis
buffer, of a 30-s bead-beating step (using garnet beads [Qiagen, MD, USA]). Once DNA was obtained (referred
to as neat), it underwent five serial dilutions (1:10 each) in kit elution buffer. For sequencing, each of the
samples from each of the dilutions was sequenced in quadruplicate.

Clinical samples and controls. We recruited 20 healthy volunteers to provide EBC, oral wash,
posterior nasopharyngeal swab, and BAL fluid samples for microbial analysis. Participants had a mean
age of 53 � 15 years, were 50% female, were 20% black and 80% white, and were all of non-Hispanic
ethnicity (Table 1). They were a mixture of persons who had never smoked, former smokers, and current
smokers. With the exception of two participants with undiagnosed moderate airflow obstruction, they
were without evidence of lung disease, and none was taking any inhaled medications. Prior to
bronchoscopy, all participants underwent a complete history and physical examination by a pulmonolo-
gist, spirometry, chest imaging, prospective collection of medication history, and complete blood count
with differential, coagulation studies, and chemistry panel.

On the morning of the bronchoscopy visit, with the participants having taken nothing by mouth for
at least 8 h, EBC samples were obtained using the RTube collection system from Respiratory Research,
Inc. (Charlottesville, NC), according to the manufacturer’s instructions. Consistent with American Thoracic
Society recommendations (24), participants wore a nose clip and were coached to breath naturally
without hyperventilation for approximately 20 min through a one-way valve into a cooled chamber that
condenses and collects up to 2 ml of expired vapors, aerosols, and moisture.

Next, before any other procedures, participants provided an oral rinse specimen, as described
previously (25). They then underwent bronchoscopy under moderate conscious sedation, using an orally
inserted fiber-optic bronchoscope. We performed bilateral BAL in the right middle lobe and lingula,
followed by collection of a posterior nasopharyngeal swab, as described in detail elsewhere (2, 25, 26),
but omitting protected specimen brushing. We also created a sample called combined BAL (CBAL) fluid
from an equal mix of left-lung and right-lung BAL fluid samples. We collected control samples specific
to the experimental samples wherever possible: sterile saline for the oral washes, sterile saline passed as
a prewash through the bronchoscope for the BAL fluid specimens, unused swabs for nasal swabs, and
EBC control samples obtained by passing 1 ml of sterile double-distilled water over a fresh RTube and
collecting the water. Isolation controls were generated by carrying out the DNA isolation procedure
without the addition of any sample.

DNA isolation. All liquid samples were processed as described previously (19). Briefly, we aliquoted
samples into dolphin-nose Eppendorf tubes and spun them at an rcf of 18,000 at 4°C in a microcentrifuge
for 30 min to pellet the cells (bacterial and host). We then extracted DNA from the pellet using the
Qiagen DNeasy kits with the addition of bead beating. Brushes or swabs were placed directly in the bead
beating tubes, and we carried out the remaining steps of DNA isolation according to manufacturer
protocols with minor modifications (19). DNA extraction controls were used for DNA contamination
within extraction reagents. In addition to extraction controls that related to the kits used for DNA
isolation for the clinical samples, extraction controls were generated from seven total separate DNA
isolation kits to examine reagent contamination across multiple lots.

Library preparation and sequencing. We prepared DNA libraries by amplifying the V4 region of the
bacterial 16S rRNA gene using a low-bacterial-biomass protocol as described previously (19) with a
dual-indexing strategy (27). Sequencing was performed on a MiSeq instrument (Illumina, San Diego, CA)
at the Microbial Systems Molecular Biology Laboratory at the University of Michigan. Samples were
sequenced in three runs: one comprised the dilution replicates and extraction control experiments
(Fig. 1), and the other two runs were composed of the clinical samples. Where physically possible, all
samples and replicates from an individual were run on the same plate.

Bacterial load quantification. Bacterial DNA was quantified using a QX200 Droplet digital PCR
system (Bio-Rad, Hercules, CA). Quantitation was performed as described previously (28).

Sequence processing and analysis. Fastq files were obtained, and the sequences were processed
using the open source software mothur v.1.36 according to the MiSeq SOP minor alterations. We used
the SILVA bacterial database for alignment and binned operational taxonomic units (OTUs) at 97%
similarity. We generated taxonomies using the RDP taxonomy. After generation of the .shared file and the
.cons.taxonomy file, these files were imported into R for final analysis. The R packages that we used for
analysis relied heavily upon base-R, vegan (29), ComplexHeatmap (30), ggplot2 (31), dplyr (32), tidyr (33),
mvabund (34), and RColorBrewer (35). Additionally, we used Prism 8 (GraphPad Software, San Diego, CA)
to generate figures. Final figures were assembled in Photoshop CS5 (Adobe Inc.). Analysis of the controls
(Fig. 1C and Fig. S1 to S9 in the supplemental material) indicated that three OTUs were likely contam-
inants. These OTUs were removed from all clinical samples to eliminate elements that could artificially
make samples look more similar to one another. To ensure that removal of the OTUs did not remove all
viable counts from a sample, the count totals before and after removal were compared; an average of
roughly 90% (�19,000 reads/sample) of the reads were retained. It should be noted that how to deal
with backgrounds is a complex issue given the compositional nature of microbiome data and should be
evaluated with care.

Data availability. Sequences have been deposited in the SRA under accession numbers
PRJNA549253 and PRJNA552077. Code and other files related to the project can be found at https://
github.com/Tetrakis/low-biomass-noise.
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