
our identifying two highly discriminatory restriction enzymes: StuI and EarI. The ex-
pected sizes (measured in base pairs) of the URA5 gene fragments resulting from StuI
digestion are as follows: 221 bp, 237 bp, and 322 bp in VGIV and 237 bp and 543 bp in
VGV. The EarI digestions produced 247-bp and 501-bp fragments in VGIV and 247-bp
and 300-bp fragments in VGV. We compared URA5 RFLP data from 17 VGIV isolates
(Table S1) with the data from 6 VGV isolates obtained by StuI or EarI digestion, and the
results are shown in Fig. S9C and D.

Type strain of VGV. We have designated MF34 (clade B isolate) as the type strain
of VGV. MF34 was isolated from a tree hole located in Mutinondo (latitude �12.45,
longitude 31.29), Central Zambezian Miombo Woodlands (Table 1). Its genome has
been assembled and annotated to near-completion (15 scaffolds with N50 � 1.3 Mb and
telomeric repeats at 28 contig ends). MF34 is serotype B and MAT� and causes mild
pneumonia in C57BL/6 mice with negligible neurotropism.

DISCUSSION

Over the past decade, increased sampling worldwide and whole-genome sequenc-
ing (WGS) methods have uncovered greater genetic diversity of important pathogens,

Alcian Blue, 2.5X Alcian Blue,10X H&E, 10X

VGV D20 LUNGS
Bar, 50�m (X10 magnification) and 200�m (X2.5 magnification)

VGIV
WM779

VGIV
MF46

VGV
MF5

VGV
MF13

VGV
MF51

FIG 6 Histopathology of lung infected by VGV isolates. Sections of the mouse lungs infected by three
different VGV isolates and two VGIV control strains were stained with alcian blue and periodic acid-Schiff
stain and counterstained with hematoxylin (left and middle columns) or with standard hematoxylin and
eosin (right column). Note that alcian blue stains cryptococcal cells blue. Images in the left columns were
acquired using a 2.5� objective. Images in the middle and right columns are higher-magnification (10�)
images of the areas indicated by the yellow boxes in the 2.5� images.
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including the C. neoformans and C. gattii species complexes. For example, sampling
from Botswana revealed the existence of the C. neoformans VNB lineage (30), which
itself has recently been shown to be deeply split into two genetically isolated lineages,
VNBI and VNBII (31). Thus far, VGVI is the only lineage that exists as a single genotype
since the three isolates previously designated C. decagattii appear to have been isolated
from the same patient (21). The previously identified lineages of Cryptococcus have
recently been designated separate taxonomic species based on phylogenetic species
recognition criteria (17). While we agree that Cryptococcus contains a number of
genetically diverse and monophylectic clades that can be viewed as species under an
evolutionary species concept (32), we have previously argued that it is premature to
give each clade a separate taxonomic name at this juncture (18, 33). One notable
concern raised by Kwon-Chung et al. (18) was that the proposed seven-species taxon-
omy (33) was likely to be unstable due to incomplete knowledge of the true extent of
Cryptococcus diversity worldwide. Our discovery of C. gattii VGV from the Miombo
woodlands of Zambia clearly shows that we have not yet achieved a full understanding
of the global biodiversity of Cryptococcus and that further exploration will likely yield
additional phylogenetic species. Until we have a more accurate consensus on the true
numbers of Cryptococcus lineages, we propose that the names “VN” and “VG” serve as
practical “Zip code” identifiers within C. neoformans and C. gattii, offering a convenient
way to describe newly discovered lineages or recombinants without introducing
unwanted nomenclatural instability and confusion.

Our discovery of C. gattii VGV in samples from hyrax-associated environments
suggests an association with these mammals. Hyrax are small herbivores that are most
closely related to elephants (Proboscidea) and sea cows (Sirenia) and are characterized
by the behavior of defecating in communal latrines, usually located in crevices in rocky
kopjes, over many generations (34). These locations are often sheltered in rocky caves
and droppings are likely to accumulate for upwards of 50,000 years, in some cases
forming a stable paleoenvironmental hot spot of urea-rich nitrogenous material (35).
Cryptococcus has a pronounced trophism for urea as a nutritive substrate, and pigeon
guano is known to support prolific growth of C. neoformans and (to a lesser extent) C.
gattii (36). Our finding that hyrax middens are hotspots of Cryptococcus diversity
suggests that their ecological stability in landscapes that are low in nitrogen availability
may lead to them being important arenas for the evolution of Cryptococcus and that
they will likely be fertile ground for further discovery of diversity within this genus.

Fungal association with small mammals may suggest adaptations that confer patho-
genicity, known as the “endozoan, small-mammal reservoir” hypothesis (37), and
deserves to be explored further following our findings of an association of Cryptococcus
with hyrax. Accordingly, alongside further study of potential mammalian reservoirs, the
search for VGV clinical isolates is also needed in order to understand the true virulence
potential of VGV and whether it can spill over into humans. Murine models have shown
that environmental isolates are less virulent than clinical isolates of the same molecular
type in both the C. gattii and C. neoformans species complexes, suggesting that
polymorphic virulence factors exist (38, 39). However, despite its great genetic distance
from all other lineages, the new VGV lineage is not clearly distinguishable from others
by existing methods such as serotyping or the routinely used approach of RFLP analysis
employing Sau96I and HhaI URA5 digestion (14). Thus, it is possible that previously
analyzed isolates belonging to VGV may have been misidentified using non-WGS
methods. The most likely candidates for the search of clinical VGV are VGIV serotype B
isolates recovered from patients. Geographically, the most likely place to find the VGV
clinical isolates appear to be in sub-Saharan Africa since the current panel of isolates
were found in the Zambian environment within an ecoregion that includes Tanzania,
Burundi, Democratic Republic of the Congo, Angola, and Malawi.

Previous work has shown that most isolates of the C. gattii species complex cause
pulmonary infection in a murine model with low neurotropism (20, 40, 41). The four
VGV isolates tested here were less neurotropic than the MF46 VGIV isolate that was
collected from the same Zambian environment, and all the examined Zambian envi-
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ronmental isolates were significantly less virulent than a VGIV control strain, WM779. It
remains to be shown whether the differences in neurotropism are due to lineage-
specific genes or to alleles in VGV. As previous work has shown in C. neoformans (42),
capsule size difference manifested by clades A and B in vitro was unrelated to virulence
in mice.

Although serotypes have not yet been conclusively linked to virulence in Crypto-
coccus, they remain important for strain identification. The majority of C. gattii isolates
tested to date have been of serotype B, except for a subset of VGIII and the majority of
VGIV isolates, which are serotype C. The six VGV isolates are also all serotype B— but,
due to the lower growth rate on CGB agar, the CGB reaction was weaker than that seen
with other isolates of serotype B or serotype C. It took 24 h longer for VGV than for the
other VG isolates (VGI to VGIV) to turn the medium dark blue. As the six VGV isolates
were all serotype B whereas the majority of VGIV isolates (the most closely related
lineage) reported thus far have been serotype C, it is possible that VGV may also occur
in serotype C. Additional environmental sampling of VGV is therefore necessary to
establish the dominant serotype, since the current sample size of six is insufficient for
definitive conclusions.

Surprisingly, five of the six VGV isolates and the two control VGIV isolates were
highly resistant to fluconazole (MIC of �64 �g/ml), a commonly used antifungal drug.
The three isolates of VGV clade A were more resistant to FLC than the isolates of VGV
clade B. Although the C. gattii species complex was previously known to be more
resistant to FLC on average than C. neoformans (43), such high resistance to FLC in
environmental isolates is notable and was not previously reported (44). All of the VGV
isolates had identical nucleotide sequences for ERG11 and AFR1, demonstrating that the
resistant isolates did represent not a result of genetic differences in the target or
transporter of FLC. However, innate fungal resistance to FLC can be due to multiple
factors besides the ERG11 gene or efflux pumps and the mechanism(s) of FLC resistance
in VGV remains a subject for future investigation. Why environmental VGV isolates
should have such high resistance to azoles is unclear, as, given the relatively pristine
environments from which they were recovered, it is unlikely that they had come into
contact with agrichemicals. More likely, fluconazole resistance is a pleiotrophic effect
that has evolved as a consequence of exposure to xenobiotics other than azoles.
Further investigations into the evolution of FLC resistance in VGV may take on addi-
tional importance as clinical cases due to VGV are a distinct possibility in the Sub-
Saharan regions where 12% of the members of the Zambian population are living with
the HIV (https://www.unaids.org/en/regionscountries/countries/zambia).

In this paper, we present a nearly complete genome assembly for VGV type strain
MF34. The MF34 genome allowed us to conclusively establish that VGV is a lineage of
C. gattii that is separate and distinct from any previously identified and that it is not the
result of hybridization, as has been seen for other divergent isolates (31). Indeed, while
both Cryptococcus species complexes appear to have a conserved chromosome num-
ber of 14 based on the current panels of assembled and annotated genomes available,
intrachromosomal and interchromosomal rearrangements as well as large CNVs appear
to be common. This chromosomal variation may provide the genetic basis for pheno-
typic variation and may act as a genetic barrier to recombination between more highly
divergent isolates such as those from separate lineages. At the within-lineage level,
there are also a number of unique and uniquely lost “lineage-specific” genes which may
contribute to phenotypic differences between lineages. However, it should be noted
that many of the main phenotypes routinely measured, including virulence in animal
models, growth rates, and ability to cause pulmonary versus central nervous system
(CNS) infections, appear to differ as much within as between lineages.

One line of future inquiry that may help to explain this phenotypic diversity may
come from the characterization of further transcriptional differences. For example, VGII
has been shown previously to upregulate many of the ergosterol genes during coin-
cubation with bone-marrow derived macrophages (45) and it will be important to
determine whether other traits exist which differentiate the lineages of Cryptococcus.

A New Lineage of Cryptococcus gattii (VGV) ®

November/December 2019 Volume 10 Issue 6 e02306-19 mbio.asm.org 13

 on O
ctober 31, 2020 by guest

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://www.unaids.org/en/regionscountries/countries/zambia
https://mbio.asm.org
http://mbio.asm.org/


Further, it will be important to examine whether similar lineage-specific differences
underpin VGV’s increased FLC resistance and whether clinically relevant traits such as
drug resistance are linked to the environment within which these isolates have evolved.
Ultimately, our report testifies to the deep reservoir of diversity that exists within
Cryptococcus, which, despite decades of research into this genus, still harbors abundant
surprises.

MATERIALS AND METHODS
Library preparation and sequencing of Zambian isolates. Environmental sampling took place in

January and September of 2013. Samples were collected using Transwab Amies swabs (MWE; code
MW170) and sterilized 30-ml screw-cap glass bottles. Amies liquid transport swabs were taken from tree
bark (n � 20), soil (n � 19), and cracks in granite kopjes or droppings from rock Hyrax middens (n � 16).
Samples were collected and processed according to previously established protocols (46, 47), and the
samples were kept at 4°C before being processed on niger seed agar. All samples were collected under
license from the Zambian Wildlife Authority (ZAWA).

Single colonies purified from the original isolation media were maintained under cryopreservation
conditions at – 80°C at Imperial College in London since 2013. The isolates were has been changed to
revived on YPD agar (yeast extract 1%, peptone 1%, dextrose 2%) and incubated at 30°C before use.
Genomic DNA was isolated with the cetyltrimethylammonium bromide (CTAB) extraction method as
described previously (48) with modifications. Paired-end libraries (150 bp) were prepared and sequenced
using an Illumina HiSeq 4000 platform by Novogene (Davis, CA). Two Oxford Nanopore libraries of isolate
MF34 were constructed from genomic DNA using a one-dimensional (1D) library construction kit (model
no. SQK-LSK109). A total of 243,660 reads with an N50 of 9,827 were generated on a FLO-MIN106 flow cell
using a Minion. Reads were base called using Albacore v2.3.1. This resulted in 923,997,900 total bases
(�46� coverage).

Genome assembly and annotation. For isolate MF34, a hybrid assembly of Oxford Nanopore long
reads and Illumina short reads was generated. An initial assembly of the Oxford reads was generated
using Canu v1.5 (49) with parameter genomeSize � 20,000,000. The assembly was inspected for the
presence of telomeric repeat (TTAGGG) at contig ends; for two contig ends missing a telomeric repeat,
contigs were extended by aligning unassembled Canu contigs to these ends using NUCmer v3.1 (50).
Base-called reads were then aligned to the contigs using the Burrows-Wheeler transform algorithm (BWA
mem) (51) with flag “-x ont2d” and the alignments used for polishing with nanopolish (52). Two rounds
of Pilon v1.13 (53) correction were performed using Illumina BWA read alignments (51). Paired Illumina
sequences of C. decagattii (VGVI) were assembled and scaffolded using SPAdes v3.1.1 (54) with k-mer
lengths of 21, 33, 55, and 77. A summary of statistics for the assembly is provided in Table 2. Reads were
aligned to the assembly with BWA v0.7.4-r385 mem (51), and Pilon v1.12 (53) was further used to improve
the assembly. Scaffolds that were less than 1 kb were removed. The genome assembly has been
submitted to NCBI (see below for project accession number).

The C. gattii VGV MF34 and VGVI WM1802 genomes were annotated using Genemark (55), BLASTx
against Swiss-Prot (56) and KEGG (57), and HMMER hmmscan (58) against PFAM (59). We ran tRNAscan
(60) and RNAmmer (61) to identify non-protein-coding genes. Gene predictions were checked for a
variety of issues, including overlapping of noncoding genes, overlapping of coding genes, and the
presence of in-frame stops. Genes were named according to evidence from BLASTx and HMMER in the
following order of precedence: (i) Swiss-Prot (56), (ii) TIGRfam (62), and (iii) KEGG (57) (where BLASTx hits
must meet the 70% identity and 70% overlap criteria to be considered a good hit and for the name to
be applied). Otherwise, genes were classified as hypothetical proteins.

Genes were functionally annotated by assigning PFAM domains (59), GO terms, KEGG assignment,
and ortholog mapping to genes of known function. HMMER3 (58) was used to identify PFAM (release 27)
domains, and BLASTx was used against the KEGG v65 database (57) (E value, �1 � 10�10). GO terms were
assigned using Blast2GO version2.3.5 (63), with a minimum E value of 1 � 10�10. SignalP 4.0 (64) and
TMHMM (65) were used to identify secreted proteins and transmembrane proteins, respectively (see
Fig. S5 in the supplemental material). Gene sets were aligned to the 248 core eukaryotic genes (CEGs)
and BUSCO basidiomycota_odb9 set to evaluate completeness (Fig. S6).

Read alignment and variant identification. The 36 newly sequenced isolates from this study were
compared to an additional 65 isolates that had been sequenced and described in previous studies (20,
26, 38, 66, 67). These additional isolates were obtained from the NCBI Sequence read archive (SRA) and
converted from SRA format to FASTQ using SRA Toolkit version 2.3.3-4. Illumina reads were aligned to
the C. gattii VGII R265 reference genome assembly using Burrows-Wheeler Aligner (BWA) v0.7.4-r385
mem (51) with default parameters and were converted to sorted BAM format using SAMtools v0.1.9
(r783) (68).

Genome Analysis Toolkit (GATK) v2.7-4-g6f46d11 (69) was used to call both variant and reference
nucleotides from the 101 alignments (as previously described [24]). Briefly, the Picard tools AddOr-
ReplaceReadGroups, MarkDuplicates, CreateSequenceDictionary, and ReorderSam were used to prepro-
cess the alignments (http://broadinstitute.github.io/picard/). GATK RealignerTarget-Creator and IndelRe-
aligner were then used to resolve misaligned reads close to indels. Next, GATK Unified Genotyper (with
the haploid Genotyper ploidy setting) was run with both SNP and indel genotype likelihood models
(GLM). We also ran Base Recalibrator and PrintReads for base quality score recalibration on those initial
sites for GLM SNP. We then recalled variants with Unified Genotyper with the parameter “— output-
_mode EMIT_ALL_SITES.” We merged and sorted all of the calls and then ran Variant Filtration with the
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parameters “QD � 2.0, FS � 60.0, MQ � 40.0.” Next, we removed any base that had a minimum genotype
quality of below 50, a minimum proportion of alternative alleles (AD) of 80%, or a minimum depth of 10.
Finally, we removed any positions that were called by both GLMs (i.e., incompatible indels and SNPs), any
marked “LowQual” by GATK, any nested indels, and any sites that did not include a PASS flag.

Phylogenetic and population genetic analysis. The variants identified from the 101 alignments
were filtered for positions that were homozygous (reference or SNP) and polymorphic in at least one
isolate (Fig. 2), resulting in alignment of 1,517,353 nuclear sites and 970 mitochondrial sites. A FASTA file
of these positions was created and converted into PHYLIP format, and a phylogenetic tree was generated
using RAxML v7.7.8 (70) with 1,000 bootstrap replications. RAxML was run with the generalized
time-reversible (GTR) and category (CAT) rate approximation, with final evaluation of the tree performed
using GTR plus gamma-distributed rates. The same sites were analyzed using the NeighborNet Network
of SplitsTree v4.14.6 (71).

A multisample variant call format (VCF) corresponding to all 101 genomes was made with VCFtools
(72) and converted to ped and map file formats for use in PLINK v1.90 (73). Unsupervised ADMIXTURE
(74) was run on a moderately linkage disequilibrium (LD)-pruned alignment for values of K between 1
and 15. A value of K � 9 provided the lowest cross-validation error (Fig. 3d and e; see also Fig. S1). To
explore finer patterns of population structure among our sampled lineages, we applied a technique
designed to characterize patterns of haplotype sharing between panels of “donor” and “recipient”
haplotypes within a recombining population. We ran Chromopainter v2 (23) to infer, at each position in
a recipient isolate’s genome, the donor to which it is most closely ancestrally related relative to all others
in the data set. To do this, we assumed a uniform recombination rate of 1.5 M (morgans)/megabase
based on the genome-wide recombination rate previously estimated in C. neoformans (75) and with
Chromopainter’s switch and mutation rate parameters estimated using 10 runs of expectation-
maximization (�n 190.29; �M 0.0011). We then ran Chromopainter in linked mode using the haploid
switch (-j) under an “all-versus-all” framework, painting all samples using all others to produce a pairwise
coancestry matrix describing the amount of DNA matches of each isolate to every other under the
copying model.

Haplotype-based clustering was then implemented in fineSTRUCTURE (23) with an estimated nor-
malization parameter of c � 0.51, sampling cluster assignments every 10,000 iterations for 1 � 106

Markov chain Monte Carlo (MCMC) iterations after 1 � 106 initial burn-in steps. We then performed an
additional 1 � 105 hill-climbing iterations beginning with the MCMC sample with the highest posterior
probability. This classified our data into 34 clusters (Fig. S2).

For the C. neoformans VNI H99-rooted C. gattii tree, we identified 1:1 orthologs for each of the nine
isolates with Orthofinder v2.1.2 (76) using the Synima pipeline (77). We aligned orthologs with MUSCLE
v3.8.31 (78), extracted the coding DNA sequences (CDSs) in a codon context, trimmed to the smallest
contiguous sequence, and then concatenated alignments. In total, we aligned 2.16 Mb of transcripts for
each genome. Prottest v3.4 (79) was used to determine the best-fitting amino acid transition model (JTT)
according to Bayesian information criterion. The final tree was produced using RAxML v7.7.8 (70) and the
CAT rate approximation and WAG amino acid replacement matrix with 1,000 bootstrap replicates.
Synima (77) was used to visualize synteny between the genomes. The same pipeline was used to
compare the previous and updated R265 genomes.

Phenotypic analysis. To determine the growth rate of C. gattii VGV, cells of all six VGV isolates were
inoculated in YEPD broth and incubated at 30°C on a shaker (200 rpm) for 18 h. Cells were washed with
sterile phosphate-buffered saline (PBS), and 2 � 105 cells/ml were resuspended in PBS. Three-microliter
aliquots of 10-fold serial dilutions were spotted onto YEPD agar and incubated at 30°C and 37°C. For
biological confirmation of the species, isolates were inoculated on canavanine glycine bromothymol blue
(CGB) agar (80) for species-specific CGB reactions and on Christensen’s urea agar (Sigma) and norepi-
nephrine agar (81) for urease and melanin production reactions, respectively, and were incubated at 30°C
for 48 h. India ink staining of the cells grown on YEPD broth for 24 h at 30°C was used for microscopic
observation of the cell and polysaccharide capsule size. The reference strains used were WM148 or H99
(serotype A, VNI), WM626 (serotype A, VNII), WM179 (serotype B, VGI), WM178, R265 and R272 (serotype
B, VGII), WM161 (serotype B, VGIII), and WM779 (serotype C, VGIV) (14). The mating type of each isolate
was determined by PCR using primers specific to STE12� and STE20a (82).

Determination of MIC for antifungal antibiotics. MICs for fluconazole (FLC), 5-fluorocytosine (5FC),
and amphotericin B were determined using Etest strips according to the Etest technical guide (AB
Biodisk, Solna, Sweden), with slight modification. Fungal cells were grown in 5 ml of YEPD at 30°C for
18 h. Harvested cells were diluted in sterile saline solution to an optical density at 600 nm (OD600) of 0.05
and plated on yeast nitrogen base (YNB) agar plates. Etest strips were placed at the center of the plates
and incubated at 30°C for 72 h. The susceptibility endpoint was read at the first growth inhibition ellipse.
The concentration ranges tested were as follows: for FLC, 0.016 to 256 �g/ml; for both 5-FC and
amphotericin B, 0.002 to 32 �g/ml.

URA5 gene RFLP. The URA5 gene of each isolate was amplified from genomic DNA by PCR to identify
the molecular type using 50 ng of two primers: URA5 (5=-ATGTCCTCCCAAGCCCTCGACTCCG-3=) and SJ01
(5=-TTAAG ACCTCTGAACACCGTACTC-3=). Reactions were carried out in a total volume of 50 �l as
previously described (14). PCR was performed for 40 cycles at 94°C for 2 min of initial denaturation, 30 s
of denaturation at 94°C, 30 s of annealing at 55°C, and 2 min of extension at 72°C. The reactions were
completed by performing a final extension step for 10 min at 72°C. PCR products were analyzed by 1%
agarose gel electrophoresis, and 5 �l of PCR products was double digested with Sau96I (10 U/�l) and
HhaI (20 U/�l) for 3 h at 37°C. Then, digested samples were separated by 3% agarose gel electrophoresis
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at 80 V for 5 h. The RFLP patterns of URA5 gene were analyzed using well-defined bands in the gel images
by comparing them with the patterns obtained from the standard reference strains.

Restriction enzyme analysis of the URA5 gene to distinguish VGV from VGIV. We found that the
URA5 RFLP banding patterns (14) of VGV and VGIV were not clearly distinguishable using Sau96I and HhaI
(Fig. S9A). We compared the DNA sequences of the URA5 gene from MF34 (VGV) and WM779 (VGIV) and
found two restriction enzymes, StuI and EarI, that can be used to distinguish the two molecular types
based on URA5 RFLP. Three microliters of URA5 PCR products was digested with StuI (10 U/�l) or EarI
(20 U/�l) (New England BioLabs Inc.) at 37°C for 4 h, and restriction fragments were separated by
electrophoresis in 3% agarose Tris-acetate-EDTA (TAE) gels at 80 V for 5 h. Standard reference strains for
molecular typing were used as controls.

Virulence in mice. The virulence of four VGV isolates, two from clade A and two from clade B, was
assessed using 7-to-8-week-old female C57BL/6 mice (Taconic Farms). Isolates to be tested in mice were
inoculated in YEPD broth and incubated overnight, washed twice, and diluted in PBS to 2.5 � 105

cells/ml. Mice (14 per isolate) were inoculated with 20 �l of cell suspension (5 � 103 cells/mouse) by
pharyngeal aspiration. Eight mice were used for each isolate for determination of the survival rate, and
six mice each were used for the analyses of fungal burden and histopathology at the indicated time
points. Mice were monitored twice per day, and differences in survival were determined using GraphPad
Prism, version 7 (GraphPad Software, San Diego, CA).

To assess the organ fungal burden, lungs and brains of four mice from each infected group were
inspected. The mice infected with WM779 started to die on day 25 postinfection, and the lungs and
brains were harvested immediately from the dead mice on day 25. Mice infected with other isolates were
euthanized on day 60, and organs were harvested. Harvested lungs and brains were homogenized in
7 ml and 2 ml of sterile water, respectively, and 5-�l aliquots of 10-fold serial dilutions were plated on
YEPD agar and incubated at 30°C for 48 h. Fungal colonies were counted and the tissue fungal burden
was analyzed using GraphPad Prism, version 7 (GraphPad Software, San Diego, CA).

Histopathological analysis. For histopathological analysis, organs of infected mice from each group
were harvested at 10 and 20 days postinoculation and fixed in 3.7% buffered formalin and embedded in
paraffin. Sections were stained with hematoxylin and eosin (H&E) or alcian blue/periodic acid-Schiff
(AB/PAS) at Histoserv Inc.

Ethics statement. The Institutional Animal Care and Use Committee of the National Institute of
Allergy and Infectious Diseases approved all animal studies (approval no. LCIM-5E). Studies were
performed in accordance with recommendations of the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health.

Data availability. The raw sequence and genome assembly of VGV MF34 are available in NCBI under
BioProject accession no. PRJNA487802, and the culture has been deposited at the American Type Culture
Collection (accession number pending). Raw sequence data were submitted to the NCBI Sequence Read
Archive under BioProject identifiers (ID) PRJNA476154 (all C. gattii non-VGV isolates) and PRJNA480403
(all C. gattii VGV isolates).
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