
















B; Fig. S5). Of note, activation of the GPIIb/IIIa (integrin �IIb�3) was decreased on type
III collagen in platelets from GF Ldlr�/� mice compared to CONV-R Ldlr�/� mice when
fed CD (Fig. S6P), which is consistent with the defect of GF mice in integrin-dependent
static adhesion of platelets to laminin in CD-fed mice (12). The presence of gut
microbiota facilitates adhesion-induced platelet activation and ex vivo thrombus for-
mation primarily to the type III collagen in the HFD-fed Ldlr�/� mice (Fig. 6).

DISCUSSION

Even if hypercholesterolemia is the major factor in the onset of atherosclerotic
plaques, the gut microbiota, an actuating variable of the innate immune response,

FIG 5 Legend (Continued)
shown as gray dots, and data for GF animals are shown as white dots. The sex of the mice is color coded
as follows: females in red and males in blue.

FIG 6 Effects of gut microbiota on late carotid artery atherosclerosis and atherothrombosis. (A) For this study, either GF or CONV-R Ldlr�/� mice on a
conventional diet (CD) were fed for 16 weeks with a high-fat diet (HFD), thus resulting in the onset and progression of atherosclerosis. For CONV-R Ldlr�/� mice,
the HFD yielded a reduced diversity of the commensal microbiota, with an increase in the Firmicutes/Bacteroidetes ratio. Interestingly, when fed with a CD, GF
Ldlr�/� mice presented higher cholesterol levels with respect to CONV-R counterparts. (B) After cholesterol accumulation, resulting from deposition of VLDL
and LDL lipoproteins, an atherosclerotic plaque presents a subendothelial lipid core with infiltrating leukocytes characterized by the accumulation of smooth
muscle cells (SMC) from the tunica intima and tunica adventitia of the blood vessels. Although the relative plaque sizes at the carotid artery were unchanged
between the two groups, GF animals showed altered vascular inflammatory parameters and immune cell populations. EC, endothelial cells. (C) During
atherothrombosis, the plaque rupture yields to platelet deposition to the exposed subendothelial collagen, and subsequently to a bloodstream-circulating
thrombus growing on the platelet plug. In this context, GF Ldlr�/� mice fed with a HFD presented lower yields of plaque rupture, collagen adhesion, and
thrombus growth. Arterial occlusion time was increased in CD-fed GF C57BL/6J mice compared to CONV-R controls.
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could affect the progression of atherosclerosis and subsequent atherothrombosis.
Feeding Ldlr�/� mice atherogenic HFD for 16 weeks resulted in a significantly reduced
diversity of the cecal gut microbiota compared to feeding mice CD. In accordance with
previous reports, this resulted in a decrease of the Bacteroidetes phylum and an increase
in Firmicutes in the HFD group compared with littermate controls kept on a CD (38, 39).
Importantly, HFD feeding was linked to changes in the gut microbiota associated with
impaired intestinal barrier function and increased gut microbiota-dependent metabolic
endotoxemia (31).

Total plasma cholesterol, VLDL, LDL, and HDL cholesterol levels were unchanged in
CONV-R Ldlr�/� mice compared to GF Ldlr�/� mice after 16 weeks of HFD. Likewise, GF
and CONV-R HFD-fed Ldlr�/� mice, receiving the same HFD for 2 weeks, did not show
differences in total cholesterol levels (40). However, with basal CD feeding conditions,
the absence of commensal microbiota evoked a striking increase in plasma cholesterol
levels in the GF Ldlr�/� mice. Our data therefore indicate a spill-over of cholesterol
resulting from the HFD feeding, which may mask the bacterial effect. Our results on
increased plasma cholesterol levels in GF Ldlr�/� mice relative to CONV-R Ldlr�/� mice
fed CD are in accordance with a number of reports on increased free cholesterol levels,
as well as an increase in the concentration of cholesterol esters in GF Apoe�/� C57BL/6J
mice (7, 28, 41). Thereby, our results demonstrate that the cholesterol-lowering effect
of the gut microbiota is not specific to the Apoe�/� hyperlipidemia mouse model. This
could be due to enhanced microbiota-dependent cholesterol synthesis and reduced
bile acid synthesis (41). Indeed, it is most likely that the microbiota-dependent conver-
sion of primary to secondary bile acids plays a central role under steady-state conditions
(42). The involvement of the gut microbiome in the regulation of cholesterol levels is
further substantiated by a clinical study demonstrating that several bacterial taxa
correlated with plasma cholesterol levels in atherosclerotic patients (8). Based on our
findings, it will be interesting to dissect which specific members of the microbiota
promote cholesterol excretion and how their relative abundance can be modulated
through targeted dietary or probiotic intervention strategies. Coherent with previous
studies on GF Apoe�/� mice kept on hypercholesterolemic diet (7, 18, 28), we found the
absolute size of late atherosclerotic plaques in the carotid artery unchanged between
HFD-fed GF Ldlr�/� mice and HFD-fed CONV-R Ldlr�/� mice. Therefore, it will be
interesting to analyze in future work whether the microbiota modulates early athero-
sclerosis. Moreover, the commensal microbiota is composed of both pathogenic and
protective bacteria, which could also explain why the absence of microbiota did not
yield in significant changes in the atherosclerotic lesion size.

Although the absolute size of the carotid artery lesions was not affected, we
observed signs of elevated low-grade inflammation in CONV-R Ldlr�/� mice compared
to GF Ldlr�/� mice fed HFD. This was indicated by increased white blood cell counts,
namely, neutrophils and monocytes, along with elevated plasma CCL7 and CXCL1
levels. In accordance, both CCL7 and its receptor CCR2, as well as CXCL1 have been
implicated in monocyte mobilization from the bone marrow in steady state and under
conditions of hyperlipidemia, respectively (43, 44). Nevertheless, this did not result in
increased lesional macrophage content in plaques of mice receiving 16 weeks of a HFD.
Furthermore, increased levels of T-cell-related IL-9 and IL-27 were detected in the
plasma of GF Ldlr�/� mice. In the Ldlr�/� mouse model, IL-27 had an inhibitory role on
atherogenesis as it inhibited bone marrow-derived cell activation in the arterial walls
(45). In contrast, IL-9 was functionally linked to aggravated atherosclerosis in Apoe�/�

mice by the induction of vascular cell adhesion molecule 1 expression (46). In line with
elevated myeloid blood cell counts, enhanced vascular inflammation was apparent by
intravital imaging of the luminal side of carotid artery plaques prior to ultrasound-
induced rupture, with substantially increased leukocyte accumulation. Interestingly, in
the Apoe�/� mouse atherosclerosis model, this vascular inflammatory phenotype in the
atheroma-prone regions of the carotid artery was demonstrated to depend on the
endothelial expression of the Notch effector recombination signal binding for immu-
noglobulin kappa J region (RBPJ) (47), but the microbiota-dependent impact on
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endothelial pathways promoting leukocyte adhesion in atherosclerosis needs further
investigation.

To investigate the impact of the gut microbiota in atherothrombosis, we exploited
ultrasound-induced carotid artery plaque rupture combined with intravital imaging of
thrombus growth (33). Our data revealed a marked reduction in thrombus size in the
HFD-fed GF Ldlr�/� mice compared with their HFD-fed CONV-R Ldlr�/� counterparts,
pointing to a stimulatory effect of the gut microbiota on experimental atherothrom-
bosis. This finding expands on previous work from our laboratory, demonstrating that
the presence of commensals promotes arterial thrombus growth in the ligation-injured
carotid artery (12). The role of the gut microbiota in arterial thrombosis is further
corroborated by our data with the carotid artery ferric chloride injury model, showing
a significantly prolonged time course of thrombus growth in GF C57BL/6J mice relative
to CONV-R wild-type controls. To mimic physiological arterial flow conditions, we
analyzed thrombus formation on collagen type I and type III, the major platelet-
activating matrix constituents of carotid artery plaques (35), with a sensitive standard-
ized whole-blood flow chamber system to detect differences in thrombus growth and
adhesion-dependent platelet activation (37). Similar to our in vivo observations, we
found reduced thrombus height, contraction score, and multilayer score of thrombi
formed on type III collagen in the anticoagulated whole blood from HFD-fed GF Ldlr�/�

mice compared to HFD-fed CONV-R Ldlr�/� mice. Exposure of phosphatidylserine was
likewise decreased on collagen type I and type III coatings, which is known to be
mediated via signaling of the collagen receptor glycoprotein VI (GPVI) (36, 48), a crucial
receptor for platelet adhesion and aggregate formation at the arterial injury site
(49–51). Since we uncovered a microbiota-dependent increase in adhesion-induced
platelet activation, it will be most interesting to study platelet GPVI signaling related to
phosphatidylserine exposure in the GF hyperlipidemic Ldlr�/� mouse model.

In conclusion, our data demonstrate that the microbiota does not modulate late
absolute atherosclerotic lesion size in the carotid artery, thus supporting recent reports
using the Apoe�/� mouse model (7, 18, 28). Here we confirmed in the Ldlr�/� mouse
hypercholesterolemia model that the gut microbiota reduces plasma cholesterol levels
with CD feeding, but not under HFD-induced hypercholesterolemia in the Ldlr�/�

mouse model (7, 28). Our results demonstrate that, despite not affecting the absolute
lesion area in the carotid artery, the commensal microbiota augments low-grade
inflammation in the vessel wall. Our results suggest that a diminished adhesion-
dependent platelet activation on type I and type III collagen causes reduced plaque
rupture atherothrombosis in the carotid artery of HFD-fed GF Ldlr�/� mice. Future
experiments should provide mechanistic insights on how the gut microbiota interferes
with platelet-collagen interaction, the pivotal pathomechanism in arterial thrombosis.

MATERIALS AND METHODS
Animals. B6.129S7Ldlrtm1Her/J mice (Ldlr�/� mice) (52) were purchased from The Jackson Labora-

tory (Bar Harbor, ME, USA). Ldlr�/� mice were rederived as germfree (GF) by aseptic hysterectomy and
maintained as a GF mouse colony in sterile flexible film mouse isolator systems. The germfree status of
mice was tested weekly by PCR for detection of 16S rDNA and by bacterial culture. All experimental
animals were 9- to 29-week-old male or female mice housed in the Translational Animal Research Center
(TARC) of the University Medical Center Mainz under specific-pathogen-free (SPF, CONV-R) or GF
conditions in EU type II cages with two to five cage companions with standard autoclaved lab diet and
water ad libitum, 22°C � 2°C room temperature, and a 12-h light/dark cycle. All groups of mice were sex
and age matched, and all mice were free of clinical symptoms. All procedures performed on mice were
approved by the local committee on legislation on protection of animals (Landesuntersuchungsamt
Rheinland-Pfalz, Koblenz, Germany; 23177-07/G12-1-100; 23177-07/G13-1-072, 23177-07/G16-1-013, and
23 177-07/A 18-1-005 OEW).

Treatment of mice. Ldlr�/� mice were fed 16 weeks with an adjusted calories diet (42% kcal from
fat, 17.3% protein, 48.5% carbohydrates, 21.2% [wt/wt] fat, and 0.2% cholesterol; contains 34% [wt/wt]
sucrose) that had been vacuum packaged, irradiated, and microbial analyzed (catalog no. TD.88137;
Envigo, Venray, the Netherlands). Control mice were kept on an autoclaved control diet (catalog no.
5021-3; PMI Nutrition International).

Microbiota analysis. MiSeq 16S amplicon V4-V5 sequence data were analyzed using MacQIIME
v1.9.1 (http://www.wernerlab.org/software/macqiime) (53) as described previously (54, 55). Briefly, all
sequencing reads were trimmed, keeping only nucleotides with a Phred quality score of at least 20, then
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paired-end assembled, and mapped onto the different samples using the barcode information. Se-
quences were assigned to operational taxonomic units (OTUs) using uclust and the greengenes reference
database (gg_13_8 release) with 97% identity. Representative OTUs were picked and taxonomy assigned
using uclust and the greengenes database. Quality filtering was performed by removing chimeric
sequences using ChimeraSlayer and by removing singletons and sequences that failed to align with
PyNAST. The reference phylogenetic tree was constructed using FastTree 2. All samples within a single
analysis were normalized by rarefaction to the minimum shared read count to account for differential
sequencing depth among samples (95,000 sequences per sample). Relative abundance was calculated by
dividing the number of reads for an OTU by the total number of sequences in the sample. Alpha diversity
measures were computed, and unweighted Unifrac beta diversity was calculated and visualized by
principal coordinate analysis. Significance of differences in abundances of various taxonomic units
between control (CD) and HFD groups was calculated using t test, and P values were adjusted for
multiple testing using false-discovery rate (FDR) correction (q-value). Linear discriminant analysis (LDA)
effect size (LEfSe) was performed using the online tool available at http://huttenhower.sph.harvard.edu/
galaxy/.

Lipoprotein profile analysis. Plasma samples were subjected to fast-performance liquid chroma-
tography (gel filtration on Superose 6 column; GE Healthcare). Different lipoprotein fractions were
separated and evaluated based on flowthrough time. Cholesterol levels were quantified using an
enzymatic assay (Cobas, Roche) according to the manufacturer’s protocol.

Analysis of carotid artery atherosclerotic lesion using histology. Lesion development in the left
common carotid artery was quantified by hematoxylin-and-eosin (H&E) staining of 4-�m longitudinal
cryosections.

Hematologic analysis. EDTA anticoagulated mouse whole blood was collected from anesthetized
mice (5 mg/kg midazolam [5 mg of midazolam per kg of body weight], 0.5 mg/kg medetomidine,
0.05 mg/kg fentanyl), by intracardial puncture. Platelet and total and differential white blood cell counts
were determined using an automatic cell counter (ADVIA; Siemens, Erlangen, Germany).

Flow cytometry. Whole blood was collected in an EDTA-buffered tube, subjected to red blood cell
lysis, and centrifuged for 5 min at 300 � g, and cell pellets were subsequently stained with different
antibody cocktails for analysis by flow cytometry. Flow cytometry was conducted with a FACS Canto II,
using FACSDiva software (BD Biosciences). Cell populations were discriminated by the following antibody
cocktail: anti-CD45 (clone 30-F11; eBioscience), anti-CD115 (clone AFS98; eBioscience), anti-Gr1 (clone
RB6-8C5; Biolegend), anti-CD11b (clone M1/70; eBioscience), anti-B220 (clone RA3-6B2; eBioscience), and
anti-CD3 (clone 145-2C11; eBioscience). Cell populations and marker expression were gated using the
FlowJo analysis program (Treestar): leukocytes (CD45�), neutrophils (CD45� CD115-Gr1high), monocytes
(CD45� CD11b� CD115�), and lymphocytes (CD45� CD3� and CD45� B220�).

Cytokine analysis. Cytokine levels in mouse plasma samples were measured using the ProcartaPlex
Multiplex Immunoassay technology from Affymetrix (Affymetrix, eBioscience, ProcartaPlex Mouse Cyto-
kine & Chemokine Panel 1, 26-plex), according to the manufacturer’s protocol.

Preparation of platelets and leukocytes for intravital epifluorescence microscopy. Mice were
anesthetized by intraperitoneal injection of a solution of midazolame (5 mg/kg body weight), medeto-
midine (0.5 mg/kg body weight), and fentanyl (0.05 mg/kg body weight). Citrated whole blood was
collected by intracardial puncture. Murine platelets were isolated and labeled with Rhodamin B (20 �g/
ml). The labeled platelet suspension was adjusted to a final concentration of 150 � 103 platelets/�l, and
250 �l of suspension was injected via a jugular vein catheter. Thrombus formation of murine platelets
was assessed by high-speed epifluorescence microscopy 10 min after plaque rupture. To characterize
leukocyte adhesion and rolling in vivo, leukocytes stained with acridine orange (50 �g/�l; 100 �l per
mouse; Sigma-Aldrich) were imaged.

Mouse common carotid artery thrombosis models. Plaque rupture and measurement of acute
thrombus formation were performed as described earlier (33). Ldlr�/� mice were fed high-fat diet with
42% from fat for 16 weeks. After the mice were anesthetized by intraperitoneal injection of a solution of
midazolame (5 mg/kg; Ratiopharm GmbH, Ulm, Germany), medetomidine (0.5 mg/kg; Pfizer Deutschland
GmbH, Berlin, Germany), and fentanyl (0.05 mg/kg; Janssen-Cilag GmbH, Neuss, Germany), a polyethyl-
ene catheter (0.28-mm inner diameter [ID], 0.61-mm outer diameter [OD]; Smiths Medical Deutschland
GmbH, Grasbrunn, Germany) was implanted into the right jugular vein, and the right carotid artery was
dissected free from surrounding tissue. The animal was injected intravenously with Rhodamin B-labeled
platelets obtained from a donor mouse with the same genetic background, hygiene status, and feeding
procedure. A subset of mice were also injected with acridine orange for leukocyte staining.

The ferric chloride injury model was performed by placing a 1-mm2 filter paper that was soaked with
10% (wt/wt) FeCl3 solution for 3 min laterally to the common carotid artery (55). Prior to the ferric
chloride injury, the anesthetized mouse was infused with 5- (and 6-) carboxy-2=,7=-dichlorofluorescein
diacetate (DCF)-stained platelets (green), as previously described (12). Directly after 3 min, the filter paper
and any residuals were flushed away with isotonic sodium chloride solution that was warmed to 37°C.
Then, the common carotid artery of the mouse was placed under the objective, and the resulting thrombus
formation was recorded until the artery was completely occluded by using a high-speed wide-field Olympus
BX51WI fluorescence microscope with a long-distance condenser and a 10� (numerical aperture [NA] of 0.3)
water immersion objective with a monochromator (MT 20E; Olympus Deutschland GmbH, Hamburg, Ger-
many) and a charge-coupled-device camera (ORCA-R2; Hamamatsu Photonics, Japan). The time to occlusion
of the FeCl3-injured common carotid artery was determined. If the carotid artery did not occlude within 45
min, the experiment was terminated. Videos were recorded before the application of the filter paper, directly
after removing the filter paper, and then at 3-min intervals.
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Intravital high-speed video epifluorescence microscopy. Using intravital fluorescence microscopy,
a plaque was selected, and a rupture was induced by ultrasound application using a VibraCell VCX130
processor (Sonics, Newtown, CT, USA) (33, 34). Measurements were performed with a high-speed
wide-field Olympus BX51WI fluorescence microscope using a long-distance condenser and a 10� (NA of
0.3) water immersion objective with a monochromator (MT 20E; Olympus Deutschland GmbH, Hamburg,
Germany) and a charge-coupled-device camera (ORCA-R2; Hamamatsu Photonics, Japan). For image
acquisition and analysis, the Realtime Imaging System eXcellence RT (Olympus Deutschland GmbH,
Hamburg, Germany) software was used. Thrombus formation was recorded as soon as possible by
capturing fluorescent images for at least 10 min. For image analysis, a threshold level was set, and
thrombus area was measured.

Whole-blood thrombus formation and platelet adhesion under flow. Experiments were per-
formed as described previously (56) with minor modifications. Glass coverslips (24 by 60 mm) were
coated with two microspots (0.5 �l/spot) in the direction of the flow: (i) collagen type III (100 �g/ml;
Octapharma, Berlin, Germany) and (ii) collagen type I (100 �g/ml; Nycomed Pharma, Munich, Germany).
The coated coverslips were blocked with modified Tyrode’s HEPES buffer (pH 7.45) (TH buffer) (5 mM
HEPES, 136 mM NaCl, 2.7 mM KCl, 2 mM MgCl2, 0.42 mM NaH2PO4) containing 1% bovine serum albumin
(BSA) and mounted in parallel plate flow chambers.

Blood samples were collected by retro-orbital puncture of mice under isoflurane anesthesia into
40 �M PPACK, 5 U/ml heparin, and 50 U/ml fragmin (final concentrations) and perfused for 3.5 min, at
a wall shear rate of 1,000 s�1, over the microspot coatings. The platelets were stained by 2 min after
perfusion with Tyrode’s HEPES buffer (pH 7.45) (5 mM HEPES, 136 NaCl, 2.7 mM KCl, 2 mM MgCl2, 0.42
NaH2PO4, 2 mM CaCl2, 1 mg/ml glucose, 1 U/ml heparin, and 1 mg/ml BSA), supplemented with fluo-
rescein isothiocyanate (FITC)-labeled rat anti-mouse CD62P monoclonal antibody (MAb) (1:40) (Emfret
Analytics, Würzburg, Germany), phycoerythrin (PE)-labeled rat anti-mouse JON/A MAb (1:20) (Emfret
Analytics), and Alexa Fluor 647 (AF647)-labeled annexin A5 (1:200) (Invitrogen Life Technologies, Carls-
bad, CA, USA). Representative end-stage bright-field microscopic images were taken from each mi-
crospot during staining. After 2 min of stasis, remaining labels were washed away by perfusion with
label-free Tyrode’s HEPES buffer, after which three representative end-stage fluorescence images were
collected per microspot.

Microscopic images (1,360 by 1,024 pixels, 142 by 107 �m, 8-bit) were recorded with an EVOS fluo-
rescence microscope (Life Technologies, Carlsbad, CA, USA), equipped with green fluorescent protein
(GFP), red fluorescent protein (RFP), and Cy5 light-emitting diode (LED) cubes, and an Olympus 60� oil
immersion objective, basically as described previously (37). Recorded images were analyzed using
semiautomated scripts written in Fiji software (Laboratory for Optical and Computational Instrumenta-
tion at the University of Wisconsin—Madison, USA). This resulted in percentages of surface area coverage
(%SAC) of deposited platelets/thrombus (from bright-field images) and of %SAC of platelet/thrombus
fluorescence per fluorescent label. In addition, bright-field images were analyzed for a morphological
score (scale of 0 to 5), thrombus contraction score (scale of 0 to 3), and thrombus height (multilayer, scale
of 0 to 3) in comparison to reference images, to provide an indication of the overall size and height of
platelet aggregates on the microspots (37). Finally, the %SAC of multilayered thrombi was analyzed by
manual coloring in Fiji.

For each flow run, parameter values from individual bright-field and fluorescence images were
averaged to obtain one value per parameter per microspot. These values were linearly normalized to a
scale from 0 to 10 per individual parameter. Gene effect heatmaps were obtained by subtracting the
normalized average values per parameter of GF mice minus CONV-R mice. Differences compared to
CONV-R mice were considered statistically significant with P � 0.05 (t test, two-sided, equal variance)
after correction for multiple comparisons, where required. Subtraction heatmaps were produced by
using the R package version 3.2.5 (www.r-project.org).

Statistical analysis. Data are presented as means � standard errors of the means (SEM). Statistical
calculations were performed with GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA, USA) using
the independent samples Student’s t test to compare two groups and analysis of variance (ANOVA) with
Tukey post hoc test for more than two groups.

Availability of data and materials. Sequence files and metadata for all samples used in this study
have been deposited in the ENA database (https://www.ebi.ac.uk/ena) under the accession numbers
ERS2865886 to ERS2865897. The applied commands and the LDA effect size are provided as supple-
mental material (Text S1). Other data sets used and/or analyzed during the current study are available
from the corresponding author upon request.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02298-19.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, PDF file, 0.03 MB.
FIG S2, PDF file, 0.2 MB.
FIG S3, PDF file, 0.3 MB.
FIG S4, PDF file, 0.7 MB.
FIG S5, PDF file, 0.1 MB.
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