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The idea that positive-sense RNA (�RNA) viruses may be to some extent taxonom-
ically unified arose when unexpected similarities between animal and plant virus

genomes were discovered (reviewed in reference 1). A comprehensive early analysis
proposed three supergroups (2), which were named alpha-like, flavi-like, and picorna-
like. However, the positions of several virus groups (e.g., nodaviruses, tombusviruses,
nidoviruses, and leviviruses) have remained uncertain and varied in different analyses.
Recent metagenomic studies have revealed additional, yet-uncharacterized virus
groups and increased the amount of data (3), permitting a more powerful analysis
based exclusively on RNA-dependent RNA polymerase (RdRp) sequences (4). Wolf et al.
(4) divide �RNA viruses into three phylogenetic groups in a novel way. Relatively small
“branch 1” contains �RNA bacteriophages (i.e., leviviruses) and their eukaryote-
infecting relatives, which have soluble polymerases (5). In contrast, the vast majority of
animal and plant �RNA viruses replicate in association with various intracellular
membranes (6) and were placed onto branches 2 and 3. Branch 2 contains the
well-studied picorna-like viruses, as well as nidoviruses. Their replication complexes
display a complex morphology of vesicle clusters and double-membrane vesicles,
whose detailed organization is poorly understood (7). Branch 3 represents a new
phylogenetic cluster, as it unifies the alpha-like and flavi-like viruses as well as noda-
viruses and tombusviruses. All these induce the production of spherules, small mem-
brane invaginations, which are proposed to protect the double-stranded replication
intermediate and release the completed positive-sense strands through a narrow neck
structure (6, 8).

The question thus arises, whether the membrane association of the polymerase was
a primordial characteristic of viruses in branches 2 and 3, which may have facilitated
virus replication in early eukaryotic cells possessing internal membranes. The phylog-
eny of RdRps cannot answer this question, since the membrane-binding sites in viral
replicases reside outside the conserved core RdRp domain (6). Furthermore, the mem-
brane association mechanisms are entirely different in different virus groups, consist-
ing, e.g., of an amphipathic alpha helix (binding membranes in a monotopic fashion) in
several alpha-like viruses, versus multiple transmembrane proteins in flavi-like viruses
(7, 9). The second question, therefore, is whether the two types of morphologies of the
replication sites for viruses within branches 2 and 3 are ancient features with at least
some degree of functional or structural conservation or whether the similar appear-
ances of the replication structures merely reflect our limited understanding. Structur-
ally, the best model of a spherule (from a nodavirus) shows a multimeric polymerase
complex forming a ring or crown at the neck of the spherule (10). The conservation of
such an arrangement, even if it consists of a different set of proteins in a different
stoichiometry, may reflect a common ancestry, if an evolutionary pathway connecting
the different structures can be reconstructed. However, complex structures can also
arise through convergence in response to evolutionary pressures, such as the need to
protect the replicative RNA. While criticism can be aimed toward a phylogenetic
proposal based on a single protein, I believe that the proposed classification of Wolf et
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al. (4) provides new research directions and increased understanding when comple-
mented with the characterization of newly identified virus groups and with more
precise functional and structural models of �RNA virus replication complexes.
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