Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mBio
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Research Article | Molecular Biology and Physiology

Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Pseudomonas aeruginosa during Dual-Species Biofilm Development with Staphylococcus aureus

Su Chuen Chew, Joey Kuok Hoong Yam, Artur Matysik, Zi Jing Seng, Janosch Klebensberger, Michael Givskov, Patrick Doyle, Scott A. Rice, Liang Yang, Staffan Kjelleberg
Edward G. Ruby, Editor
Su Chuen Chew
aSingapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
bSingapore-MIT Alliance for Research and Technology, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joey Kuok Hoong Yam
aSingapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Artur Matysik
aSingapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zi Jing Seng
aSingapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Janosch Klebensberger
cUniversity of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Janosch Klebensberger
Michael Givskov
aSingapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
dCosterton Biofilm Center, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick Doyle
bSingapore-MIT Alliance for Research and Technology, Singapore
eDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott A. Rice
aSingapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
fSchool of Biological Sciences, Nanyang Technological University, Singapore
gThe ithree Institute, The University of Technology Sydney, Sydney, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Scott A. Rice
Liang Yang
aSingapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
fSchool of Biological Sciences, Nanyang Technological University, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Staffan Kjelleberg
aSingapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
fSchool of Biological Sciences, Nanyang Technological University, Singapore
hCenter for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edward G. Ruby
University of Hawaii at Manoa
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miguel Cámara
University of Nottingham
Roles: Solicited external reviewer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ehud Banin
Bar-Ilan University
Roles: Solicited external reviewer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Stoodley
The Ohio State University
Roles: Solicited external reviewer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/mBio.00585-18
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Supplemental Material
  • FIG 1
    • Open in new tab
    • Download powerpoint
    FIG 1

    The development of 19-h wild-type P. aeruginosa-S. aureus, P. aeruginosa ΔpelA-S. aureus, and P. aeruginosa ΔpslBCD-S. aureus dual-species biofilms imaged using confocal imaging every 6 h. The monospecies wild-type P. aeruginosa and S. aureus biofilms are shown for comparison. P. aeruginosa is mCherry tagged (red), and S. aureus is Gfp tagged (green). Images are representative of four biological replicates. The scale bar is 30 μm.

  • FIG 2
    • Open in new tab
    • Download powerpoint
    FIG 2

    The development of 19-h biofilms formed by wild-type and matrix mutants of P. aeruginosa cocultured with S. aureus. Error bars represent standard errors of the means (SEM) (n ≥ 4). *, P < 0.05, α = 0.05 (unpaired two-sided t test with Welch’s correction). (A) Biovolumes per area of P. aeruginosa (solid lines) in the dual-species biofilms every 6 h. (B) Biovolumes per area of S. aureus (dashed lines) in the dual-species biofilms every 6 h. Note that the y axis scales for panels A and B are different. (C) Fitness of P. aeruginosa relative to S. aureus, where a selection constant of rij = 0 means that P. aeruginosa and S. aureus are equally competitive and a rij value of >0 means P. aeruginosa is more competitive than S. aureus.

  • FIG 3
    • Open in new tab
    • Download powerpoint
    FIG 3

    Comparison of microcolony sizes in dual-species biofilms using the two-sample, two-sided Kolmogorov-Smirnov test. The red curve shows the difference between the two distributions (*, P < 0.05, **, P < 0.01, ***, P < 0.001; α = 0.05). (Top panel) Changes in size distribution as biofilms progresses from 13 to 19 h. (A to D) P. aeruginosa microcolonies in (A) wild-type P. aeruginosa-S. aureus, (B) mutant ΔpelA-S. aureus, and (C) mutant ΔpslBCD-S. aureus biofilms and S. aureus microcolonies in (D) mutant ΔpslBCD-S. aureus biofilms. (Bottom panel) Differences between P. aeruginosa microcolony size distributions formed by wild-type and matrix mutants of P. aeruginosa cocultured with S. aureus. (E and F) Wild-type P. aeruginosa-S. aureus compared to mutant ΔpelA-S. aureus at (E) 13 h and (F) 19 h. (G and H) Wild-type P. aeruginosa-S. aureus compared to mutant ΔpslBCD-S. aureus at (G) 13 h and (H) 19 h.

  • FIG 4
    • Open in new tab
    • Download powerpoint
    FIG 4

    Microrheological measurements of wild-type and matrix mutants of P. aeruginosa cocultured with S. aureus. (A) MSD curves for wild-type P. aeruginosa-S. aureus, mutant ΔpelA-S. aureus, and mutant ΔpslBCD-S. aureus microcolonies. The MSD curve for TSB medium is shown for comparison. SA, S. aureus. The orange dotted lines indicate the line of best fit to the experimentally determined MSD using a power law function for the estimation of α. (B) Representative particle trajectories in wild-type P. aeruginosa-S. aureus, mutant ΔpelA-S. aureus, and mutant ΔpslBCD-S. aureus microcolonies. The red trajectory in the middle panel indicates a particle undergoing directed motion and superdiffusion, whereas the blue and yellow trajectories indicate subdiffusion. Error bars represent SEM.

  • FIG 5
    • Open in new tab
    • Download powerpoint
    FIG 5

    Confocal images of 19-h biofilms of P. aeruginosa CdrA and diguanylate cyclase mutants cocultured with S. aureus. (A) P. aeruginosa ΔcdrA-S. aureus. (B) P. aeruginosa ΔsadC-S. aureus. (C) P. aeruginosa ΔsiaD-S. aureus. (D) P. aeruginosa ΔsiaD(siaD)-S. aureus. P. aeruginosa was mCherry tagged (red), and S. aureus was Gfp tagged (green). Images are representative of results from at least three biological replicates. The scale bar is 30 μm.

  • FIG 6
    • Open in new tab
    • Download powerpoint
    FIG 6

    MSD curves for P. aeruginosa ΔsiaD-S. aureus, P. aeruginosa ΔcdrA-S. aureus, and P. aeruginosa ΔsadC-S. aureus microcolonies. SA, S. aureus. The orange dotted lines indicate the line of best fit to the experimentally determined MSD using a power law function for the estimation of α. Error bars represent SEM.

  • FIG 7
    • Open in new tab
    • Download powerpoint
    FIG 7

    Relative levels of pyoverdine and PQS in 19-h P. aeruginosa-S. aureus biofilms. (A) Pyoverdine, as indicated by its fluorescence at an emission peak of 450 nm. (B). PQS, as indicated by the fluorescence emission of the green fluorescent protein from the PQS biosensor strain, mutant ΔpqsC(pqsA-gfp). Values are means (± standard deviations [SD]) of relative fluorescence units (RFU) determined from three biological replicates.

  • FIG 8
    • Open in new tab
    • Download powerpoint
    FIG 8

    Schematic showing how matrix polysaccharides and SiaD contribute to P. aeruginosa predominance in dual-species P. aeruginosa-S. aureus communities. (A) Psl enhances P. aeruginosa competitiveness in early stages, possibly via SiaD activation, whereas Pel enables biofim expansion to increase P. aeruginosa predominance in the later stages. (B) Dominance of wild-type P. aeruginosa and SiaD and SiaD complement mutant over S. aureus, with their corresponding PQS/pyoverdine (PVD) levels.

Tables

  • Figures
  • Supplemental Material
  • TABLE 1

    List of bacterial strainsa

    StrainRelevant characteristic(s)Reference
    or source
    P. aeruginosa wtPAO1Wild-type strain64
    P. aeruginosa ΔpelAPAO1 that does not produce the Pel matrix polysaccharide53
    P. aeruginosa ΔpslBCDPAO1 that does not express the Psl matrix polysaccharide53
    P. aeruginosa ΔcdrAPAO1 lacking the extracellular adhesin CdrAThis study
    P. aeruginosa ΔsadCPAO1 lacking the DGC SadC51
    P. aeruginosa ΔsiaDPAO1 lacking the DGC SiaD51
    P. aeruginosa ΔsiaD/pUC18-siaDCarbr; ΔSiaD mutant containing the pUC18-siaD complementation plasmidThis study
    S. aureus 15981Wild-type strain53
    • ↵a wtPAO1, wild-type strain PAO1; Carbr, carboxylate resistance.

  • TABLE 2

    Biovolumes for single- and dual-species biofilmsa

    BiofilmStrain(s)Biovolume per area (μm3 mm−2)
    1 h7 h13 h19 h
    Monospecies: P. aeruginosawtPAO126,286 ± 4,128542,412 ± 260,4281,548,912 ± 682,644277,455 ± 59,146
    Monospecies: S. aureusS. aureus 1598139,168 ± 2,660495,781 ± 190,117851,130 ± 292,7224,068,969 ± 1,335,431
    Dual species: P. aeruginosa-
    S. aureus
    wtPAO114,388 ± 2,16873,488 ± 21,746837,343 ± 104,916792,562 ± 10,272
    S. aureus 1598114,031 ± 2,41835,015 ± 18,20312,785 ± 8,18910,521 ± 3,878
    Dual species: mutant
    ΔpelA-S. aureus
    Mutant ΔpelA14,285 ± 2,69382,682 ± 32,691220,077 ± 52,939*267,374 ± 114,530*
    S. aureus 1598113,045 ± 1,993128,861 ± 62,0366,927 ± 2,78514,982 ± 4,887
    Dual species: mutant
    ΔpslBCD-S. aureus
    Mutant ΔpslBCD14,722 ± 79914,992 ± 4,185178,387 ± 48,490*1,419,718 ± 432,200
    S. aureus 1598117,662 ± 1,72962,035 ± 15,63667,605 ± 31,81520,726 ± 5,301
    Dual species: mutant ΔpelA
    ΔpslBCD-S. aureus
    Mutant ΔpelA ΔpslBCD7,611 ± 513*23,988 ± 2,37921,310 ± 4,559*50,401 ± 21,795*
    S. aureus 159817,691 ± 2,31517,752 ± 5,1034,559 ± 1,8181,868 ± 701
    • ↵a Data represent results from four biological replicates with each replicate composed of three confocal images of the biofilm in different areas on average. Asterisks (*) indicate a significant difference from the wild-type P. aeruginosa-S. aureus biofilms (P < 0.05) (unpaired t test with Welch’s correction). Error data represent SEM.

  • TABLE 3

    Competitiveness of P. aeruginosa relative to S. aureus

    BiofilmSelection rate constant, rijaCorrelation of fitness curvesb
    7 h13 h19 hBiofilmrXY
    wtPAO1-S. aureus0.16 ± 0.090.43 ± 0.070.25 ± 0.04wtPAO1-S. aureus with ΔpelA-S. aureus0.97
    Mutant ΔpelA-S. aureus−0.04 ± 0.200.30 ± 0.060.15 ± 0.04wtPAO1-S. aureus with ΔpslBCD-S. aureus0.58
    Mutant ΔpslBCD-S. aureus−0.21 ± 0.09*0.12 ± 0.01*0.23 ± 0.02ΔpelA-S. aureus with ΔpslBCD-S. aureus0.76
    Mutant ΔpelA ΔpslBCD-S. aureus0.06 ± 0.020.07 ± 0.04*0.18 ± 0.07wtPAO1-S. aureus with ΔpelA ΔpslBCD-S. aureus-0.11
    Mutant ΔsiaD-S. aureus0.11 ± 0.060.07 ± 0.04*0.01 ± 0.01*ΔpelA-S. aureus with ΔpelA ΔpslBCD-S. aureus0.13
    Mutant ΔsiaD(siaD)-S. aureus0.23 ± 0.050.19 ± 0.040.18 ± 0.05ΔpslBCD-S. aureus with ΔpelA ΔpslBCD-S. aureus0.75
    • ↵a Data represent selection rate constants during 19 h of biofilm development determined from four biological replicates, with each replicate derived from an average of three confocal images. Asterisks (*) indicate a significant difference from the wild-type P. aeruginosa-S. aureus biofilms (P < 0.05) (unpaired t test with Welch’s correction). Error data represent SEM.

    • ↵b Correlation of fitness curves is given by the Pearson correlation coefficient (rXY).

  • TABLE 4

    Surface coverage, microcolony size, and number of microcolonies in single- and mixed-species biofilmsa

    BiofilmStrain(s)Avg surface
    coverage (%)
    Avg no. of microcolony
    per area (mm−2)
    Avg microcolony
    biovolume (μm3)
    13 h19 h13 h19 h13 h19 h
    Monospecies: P. aeruginosawtPAO114 ± 410 ± 21,757 ± 3861,974 ± 360109 ± 4658 ± 23
    Monospecies: S. aureus 15981S. aureus 1598120 ± 540 ± 102,520 ± 5523,325 ± 5071,346 ± 3,0357,356 ± 2,279
    Dual species: P. aeruginosa-
    S. aureus
    wtPAO119 ± 322 ± 05,265 ± 4893,716 ± 462108 ± 7499 ± 91
    S. aureus 159810 ± 20 ± 0
    Dual species: mutant
    ΔpelA-S. aureus
    Mutant ΔpelA8 ± 19 ± 31,025 ± 3022,581 ± 1,11767 ± 5111 ± 19
    S. aureus 159810 ± 01 ± 0
    Dual species: mutant
    ΔpslBCD-S. aureus
    Mutant ΔpslBCD7 ± 333 ± 141,043 ± 7564,661 ± 2,40750 ± 41,400 ± 358
    S. aureus 159812 ± 11 ± 0207 ± 13885 ± 8565 ± 1665 ± 15
    Dual species: mutant ΔpelA
    ΔpslBCD-S. aureus
    Mutant ΔpelA ΔpslBCD3 ± 15 ± 2
    S. aureus 159811 ± 00 ± 0
    • ↵a Values are derived from three biological replicates, with each replicate derived from an average of three confocal images. Error data represent SEM.

  • TABLE 5

    Viscoelasticity and creep compliance of 19-h biofilms formed by P. aeruginosa and matrix polysaccharide mutants with S. aureus, respectively

    BiofilmRegionαJ(t) (t = 101 s, Pa−1)
    Medium (negative control)Liquid phase1.0511,500 ± 789
    wtPAO1-S. aureusMicrocolony0.873 ± 2
    Mutant ΔpelA-S. aureusMicrocolony0.742 ± 0
    Mutant ΔpslBCD-S. aureusLoose microcolony0.411,294 ± 109

Supplemental Material

  • Figures
  • Tables
  • FIG S1

    MSD curve for particles undergoing superdiffusion in wild-type P. aeruginosa-S. aureus microcolonies. The orange dotted line indicates the line of best fit to the experimentally determined MSD curve determined by the use of a power law function for the estimation of α. Error bars represent standard errors of the means (SEM). Download FIG S1, PDF file, 0.2 MB.

    Copyright © 2018 Chew et al.

    This content is distributed under the terms of the Creative Commons Attribution 4.0 International license.

  • FIG S2

    Fitness of P. aeruginosa mutants ΔcdrA, ΔsadC, and mutant ΔsiaD and complemented strain ΔsiaD(siaD) relative to S. aureus. A selection constant of rij = 0 means that P. aeruginosa and S. aureus are equally competitive and that of rij > 0 means P. aeruginosa is more competitive than S. aureus. Asterisks (*) indicate a significant difference. Download FIG S2, PDF file, 0.01 MB.

    Copyright © 2018 Chew et al.

    This content is distributed under the terms of the Creative Commons Attribution 4.0 International license.

  • FIG S3

    MSD curves for S. aureus microcolonies in mutant ΔsiaD-S. aureus dual-species biofilms compared to monospecies S. aureus microcolonies. SA, S. aureus. The orange dotted lines indicate the line of best fit to the experimentally determined MSD curve determined by the use of a power law function for the estimation of α. Error bars represent SEM. Download FIG S3, PDF file, 0.1 MB.

    Copyright © 2018 Chew et al.

    This content is distributed under the terms of the Creative Commons Attribution 4.0 International license.

  • TABLE S1

    Microcolony formation and microrheological properties of 19-h biofilms formed by mutant ΔcdrA and diguanylate cyclase mutants of P. aeruginosa with S. aureus. Download Table S1, DOCX file, 0.01 MB.

    Copyright © 2018 Chew et al.

    This content is distributed under the terms of the Creative Commons Attribution 4.0 International license.

  • TEXT S1

    Supplemental Methods. Download Text S1, DOCX file, 0.01 MB.

    Copyright © 2018 Chew et al.

    This content is distributed under the terms of the Creative Commons Attribution 4.0 International license.

PreviousNext
Back to top
Download PDF
Citation Tools
Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Pseudomonas aeruginosa during Dual-Species Biofilm Development with Staphylococcus aureus
Su Chuen Chew, Joey Kuok Hoong Yam, Artur Matysik, Zi Jing Seng, Janosch Klebensberger, Michael Givskov, Patrick Doyle, Scott A. Rice, Liang Yang, Staffan Kjelleberg
mBio Nov 2018, 9 (6) e00585-18; DOI: 10.1128/mBio.00585-18

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this mBio article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Pseudomonas aeruginosa during Dual-Species Biofilm Development with Staphylococcus aureus
(Your Name) has forwarded a page to you from mBio
(Your Name) thought you would be interested in this article in mBio.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Pseudomonas aeruginosa during Dual-Species Biofilm Development with Staphylococcus aureus
Su Chuen Chew, Joey Kuok Hoong Yam, Artur Matysik, Zi Jing Seng, Janosch Klebensberger, Michael Givskov, Patrick Doyle, Scott A. Rice, Liang Yang, Staffan Kjelleberg
mBio Nov 2018, 9 (6) e00585-18; DOI: 10.1128/mBio.00585-18
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Pseudomonas aeruginosa
SiaD
Staphylococcus aureus
biofilms
cyclic di-GMP
exopolysaccharide
microrheology

Related Articles

Cited By...

About

  • About mBio
  • Editor in Chief
  • Board of Editors
  • AAM Fellows
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Article Types
  • Ethics
  • Contact Us

Follow #mBio

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2150-7511