Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mBio
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Research Article | Ecological and Evolutionary Science

Parallel Evolution of Genome Streamlining and Cellular Bioenergetics across the Marine Radiation of a Bacterial Phylum

Eric W. Getz, Saima Sultana Tithi, Liqing Zhang, Frank O. Aylward
Nancy A. Moran, Editor
Eric W. Getz
aDepartment of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Saima Sultana Tithi
bDepartment of Computer Science, Virginia Tech, Blacksburg, Virginia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liqing Zhang
bDepartment of Computer Science, Virginia Tech, Blacksburg, Virginia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank O. Aylward
aDepartment of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Frank O. Aylward
Nancy A. Moran
University of Texas at Austin
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/mBio.01089-18
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Diverse bacterial and archaeal lineages drive biogeochemical cycles in the global ocean, but the evolutionary processes that have shaped their genomic properties and physiological capabilities remain obscure. Here we track the genome evolution of the globally abundant marine bacterial phylum Marinimicrobia across its diversification into modern marine environments and demonstrate that extant lineages are partitioned between epipelagic and mesopelagic habitats. Moreover, we show that these habitat preferences are associated with fundamental differences in genomic organization, cellular bioenergetics, and metabolic modalities. Multiple lineages present in epipelagic niches independently acquired genes necessary for phototrophy and environmental stress mitigation, and their genomes convergently evolved key features associated with genome streamlining. In contrast, lineages residing in mesopelagic waters independently acquired nitrate respiratory machinery and a variety of cytochromes, consistent with the use of alternative terminal electron acceptors in oxygen minimum zones (OMZs). Further, while epipelagic clades have retained an ancestral Na+-pumping respiratory complex, mesopelagic lineages have largely replaced this complex with canonical H+-pumping respiratory complex I, potentially due to the increased efficiency of the latter together with the presence of the more energy-limiting environments deep in the ocean’s interior. These parallel evolutionary trends indicate that key features of genomic streamlining and cellular bioenergetics have occurred repeatedly and congruently in disparate clades and underscore the importance of environmental conditions and nutrient dynamics in driving the evolution of diverse bacterioplankton lineages in similar ways throughout the global ocean.

IMPORTANCE Understanding long-term patterns of microbial evolution is critical to advancing our knowledge of past and present role microbial life in driving global biogeochemical cycles. Historically, it has been challenging to study the evolution of environmental microbes due to difficulties in obtaining genome sequences from lineages that could not be cultivated, but recent advances in metagenomics and single-cell genomics have begun to obviate many of these hurdles. Here we present an evolutionary genomic analysis of the Marinimicrobia, a diverse bacterial group that is abundant in the global ocean. We demonstrate that distantly related Marinimicrobia species that reside in similar habitats have converged to assume similar genome architectures and cellular bioenergetics, suggesting that common factors shape the evolution of a broad array of marine lineages. These findings broaden our understanding of the evolutionary forces that have given rise to microbial life in the contemporary ocean.

  • Copyright © 2018 Getz et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Parallel Evolution of Genome Streamlining and Cellular Bioenergetics across the Marine Radiation of a Bacterial Phylum
Eric W. Getz, Saima Sultana Tithi, Liqing Zhang, Frank O. Aylward
mBio Sep 2018, 9 (5) e01089-18; DOI: 10.1128/mBio.01089-18

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this mBio article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Parallel Evolution of Genome Streamlining and Cellular Bioenergetics across the Marine Radiation of a Bacterial Phylum
(Your Name) has forwarded a page to you from mBio
(Your Name) thought you would be interested in this article in mBio.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Parallel Evolution of Genome Streamlining and Cellular Bioenergetics across the Marine Radiation of a Bacterial Phylum
Eric W. Getz, Saima Sultana Tithi, Liqing Zhang, Frank O. Aylward
mBio Sep 2018, 9 (5) e01089-18; DOI: 10.1128/mBio.01089-18
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS AND DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

bioenergetics
candidate phyla
evolutionary genomics
genome streamlining
microbial oceanography
pangenomics

Related Articles

Cited By...

About

  • About mBio
  • Editor in Chief
  • Board of Editors
  • AAM Fellows
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Article Types
  • Ethics
  • Contact Us

Follow #mBio

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2150-7511