Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mBio
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Research Article

cAMP Receptor Protein Controls Vibrio cholerae Gene Expression in Response to Host Colonization

Jainaba Manneh-Roussel, James R. J. Haycocks, Andrés Magán, Nicolas Perez-Soto, Kerstin Voelz, Andrew Camilli, Anne-Marie Krachler, David C. Grainger
Susan Gottesman, Editor
Jainaba Manneh-Roussel
aInstitute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James R. J. Haycocks
aInstitute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrés Magán
aInstitute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicolas Perez-Soto
aInstitute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kerstin Voelz
aInstitute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Camilli
bDepartment of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
cHoward Hughes Medical Institute, Tufts University, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne-Marie Krachler
aInstitute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
dDepartment of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David C. Grainger
aInstitute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susan Gottesman
National Cancer Institute
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/mBio.00966-18
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The bacterium Vibrio cholerae is native to aquatic environments and can switch lifestyles to cause disease in humans. Lifestyle switching requires modulation of genetic systems for quorum sensing, intestinal colonization, and toxin production. Much of this regulation occurs at the level of gene expression and is controlled by transcription factors. In this work, we have mapped the binding of cAMP receptor protein (CRP) and RNA polymerase across the V. cholerae genome. We show that CRP is an integral component of the regulatory network that controls lifestyle switching. Focusing on a locus necessary for toxin transport, we demonstrate CRP-dependent regulation of gene expression in response to host colonization. Examination of further CRP-targeted genes reveals that this behavior is commonplace. Hence, CRP is a key regulator of many V. cholerae genes in response to lifestyle changes.

IMPORTANCE Cholera is an infectious disease that is caused by the bacterium Vibrio cholerae. Best known for causing disease in humans, the bacterium is most commonly found in aquatic ecosystems. Hence, humans acquire cholera following ingestion of food or water contaminated with V. cholerae. Transition between an aquatic environment and a human host triggers a lifestyle switch that involves reprogramming of V. cholerae gene expression patterns. This process is controlled by a network of transcription factors. In this paper, we show that the cAMP receptor protein (CRP) is a key regulator of V. cholerae gene expression in response to lifestyle changes.

  • Copyright © 2018 Manneh-Roussel et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
cAMP Receptor Protein Controls Vibrio cholerae Gene Expression in Response to Host Colonization
Jainaba Manneh-Roussel, James R. J. Haycocks, Andrés Magán, Nicolas Perez-Soto, Kerstin Voelz, Andrew Camilli, Anne-Marie Krachler, David C. Grainger
mBio Jul 2018, 9 (4) e00966-18; DOI: 10.1128/mBio.00966-18

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this mBio article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
cAMP Receptor Protein Controls Vibrio cholerae Gene Expression in Response to Host Colonization
(Your Name) has forwarded a page to you from mBio
(Your Name) thought you would be interested in this article in mBio.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
cAMP Receptor Protein Controls Vibrio cholerae Gene Expression in Response to Host Colonization
Jainaba Manneh-Roussel, James R. J. Haycocks, Andrés Magán, Nicolas Perez-Soto, Kerstin Voelz, Andrew Camilli, Anne-Marie Krachler, David C. Grainger
mBio Jul 2018, 9 (4) e00966-18; DOI: 10.1128/mBio.00966-18
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Vibrio
biochemistry
gene regulation
genome analysis

Related Articles

Cited By...

About

  • About mBio
  • Editor in Chief
  • Board of Editors
  • AAM Fellows
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Article Types
  • Ethics
  • Contact Us

Follow #mBio

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2150-7511