Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mBio
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Research Article

Metagenome-Wide Association of Microbial Determinants of Host Phenotype in Drosophila melanogaster

John M. Chaston, Peter D. Newell, Angela E. Douglas
Margaret J. McFall-Ngai, Editor
John M. Chaston
aDepartment of Entomology, Cornell University, Ithaca, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter D. Newell
aDepartment of Entomology, Cornell University, Ithaca, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Angela E. Douglas
aDepartment of Entomology, Cornell University, Ithaca, New York, USA
bDepartment of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Margaret J. McFall-Ngai
University of Wisconsin
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/mBio.01631-14
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Supplemental Material
  • Additional Files
  • FIG 1 
    • Open in new tab
    • Download powerpoint
    FIG 1 

    Larval development time and TAG content in monoassociated D. melanogaster flies. Traits for D. melanogaster that were monoassociated with each of 41 bacterial strains were measured. Phylogenetic trees were calculated using 16S sequences with unweighted branch lengths. Taxon abbreviations are defined in Table 1. Significant differences between treatments after Bonferroni correction (P < 0.05) are indicated by different letters next to bars. (A) Differences in bacterial effects on larval time to pupariation (development time) were observed between strains. Survival analysis using a Cox mixed model was used to identify significant differences between treatments, with experimental replicate and vial as random effects. To facilitate visualization, data are presented as the mean times to development ± standard errors of the means (SEM). (B) Differences in bacterial effects on TAG content were observed between strains. A linear mixed model was used to identify significant differences between treatments, with experimental replicate as a random effect. Data are presented as mean TAG content ± SEM (mean of experimental means). Red, Proteobacteria; blue, Firmicutes; gray, Bacteroidetes.

  • FIG 2 
    • Open in new tab
    • Download powerpoint
    FIG 2 

    Experimental validation of candidate microbiota genes associated with host TAG level. (A) TAG content is shown for gnotobiotic flies monoassociated with either A. pasteurianus 3P3 or A. tropicalis DmCS_006 bearing the plasmids indicated. (B) Glucose content of fly diet after gnotobiotic rearing from egg to adulthood with recombinant strains bearing the indicated plasmids. Values are means ± standard errors for 3 experiments with 7 to 9 technical replicates each. Significant difference from the results for the control were determined by Dunnet’s test (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

  • FIG 3 
    • Open in new tab
    • Download powerpoint
    FIG 3 

    Microbiota effects on diet. (A) The glucose contents of fly diet after gnotobiotic rearing from egg to adulthood with a subset of strains from the 41-strain panel are shown. Microbiota treatments are indicated along the x axes. Values are means ± standard errors for 3 experiments with 7 to 9 technical replicates each. Significant differences from the results for the control were determined by Dunnet’s test (*, P < 0.05; **, P < 0.01; ***, P < 0.001). (B) Correlation between TAG contents of gnotobiotic flies and glucose contents of food remaining after rearing. Statistics are from Spearman’s rank order test.

Tables

  • Figures
  • Supplemental Material
  • Additional Files
  • TABLE 1 

    Bacterial strains

    Strain nameAbbreviationaGenBank accession no.Preferred mediumbOxygen conditionsb
    Acetobacter aceti NBRC 14818aaceBABW00000000mMRSOxic
    Acetobacter malorum DmCS_005amacJOJU00000000cmMRSOxic
    Acetobacter pasteurianus 3P3apa3CADQ00000000b,dmMRSOxic
    Acetobacter pomorum DmCS_004apocJOKL00000000cmMRSOxic
    Acetobacter pasteurianus NBRC 101655apanBACF00000000mMRSOxic
    Acetobacter tropicalis DmCS_006atrcJOKM00000000cmMRSOxic
    Acetobacter tropicalis NBRC 101654atrnBABS00000000mMRSOxic
    Bacillus subtilis subsp. subtilis strain168bsubNC_000964.3LBOxic
    Dysgonomonas mossii DSM 22836dmosADLW00000000BHIMicrooxic
    Escherichia coli strain K-12 substrain MG1655ecokNC_000913.3LBOxic
    Enterococcus faecalis V583efavNC_004668.1BHIOxic
    Enterococcus faecalis OG1RFefogNC_017316.1BHIOxic
    Enterobacter hormaechei ATCC 49162ehorAFHR00000000LBOxic
    Gluconacetobacter europaeus LMG 18494geurCADR00000000PotatoOxic
    Gluconacetobacter hansenii ATCC 23769ghanADTV01000000PotatoOxic
    Gluconacetobacter oboediens 174Bp2goboCADT00000000PotatoOxic
    Gluconacetobacter xylinus NBRC 3288gxylNC_016037.1PotatoOxic
    Gluconobacter frateurii NBRC 101659gfraBADZ00000000PotatoOxic
    Lactobacillus animalis KCTC 3501laniAEOF00000000mMRSMicrooxic
    Lactobacillus brevis DmCS_003lbrcJOKA00000000cmMRSMicrooxic
    Lactobacillus brevis subsp. gravesensis ATCC 27305lbgaACGG00000000mMRSMicrooxic
    Lactobacillus buchneri NRRLB-30929lbucNC_015428.1mMRSMicrooxic
    Lactobacillus casei W56lcasNC_018641.1mMRSMicrooxic
    Lactobacillus fermentum ATCC 14931lferACGI00000000mMRSMicrooxic
    Lactobacillus fructivorans DmCS_002lfrcJOJZ00000000cmMRSMicrooxic
    Lactobacillus fructivorans KCTC 3543lfrkAEQY00000000mMRSMicrooxic
    Lactobacillus gasseri ATCC 33323lgasNC_008530.1mMRSMicrooxic
    Lactococcus lactis BPL1llacJRFX00000000mMRSMicrooxic
    Lactobacillus malefermentans KCTC 3548lmleBACN00000000mMRSMicrooxic
    Lactobacillus mali KCTC 3596 = DSM 20444lmliBACP00000000mMRSMicrooxic
    Lactobacillus plantarum DmCS_001lplcJOJT00000000cmMRSMicrooxic
    Lactobacillus plantarum WCFS1lplwNC_004567.2mMRSMicrooxic
    Lactobacillus rhamnosus GGlrhaNC_013198.1mMRSMicrooxic
    Lactobacillus versmoldensis KCTC 3814lverBACR00000000mMRSMicrooxic
    Leuconostoc fallax KCTC 3537lfalAEIZ00000000mMRSMicrooxic
    Providencia burhodogranariea DSM 19968pburAKKL00000000LBOxic
    Pseudomonas putida F1pputNC_009512.1LBOxic
    Serratia marcescens ATCC 13880smarN. Perna, personal communicationLBOxic
    Streptococcus mutans UA 159smutNC_004350.2 BHIMicrooxic
    Streptococcus parasanguinis FW 213sparNC_017905.1BHIMicrooxic
    Sphingomonas wittichii RW1switNC_009511.1BHIOxic
    • ↵a The abbreviations are used in Fig. 1 and in the supplemental material.

    • ↵b Details are provided in Materials and Methods.

    • ↵c Newell and Douglas et al., submitted for publication.

    • ↵d Annotations were not available with whole-genome sequence data, so annotation was performed in RAST.

  • TABLE 2 

    Top significant associations between larval development rate and phylogenetic distribution groupa

    P valueNo. of COGsNotable annotated genesPDG (no. of Acetobacter strains, no. of Gluconacetobacter strains, and other taxa containing COG[s])
    2.20E−161YciL protein7, 4, E. hormaechei, E. coli, P. putida, S. marcescens
    1.10E−153Coenzyme PQQ synthesis B, C7, 4, G. frateurii, E. coli, S. marcescens, P. putida, E. hormaechei
    2.70E−151Hypothetical protein7, 4, G. frateurii, E. coli, S. marcescens, S. wittichii, P. putida, P. burhodogranariea, E. hormaechei, 2 Enterococcus strains
    4.30E−141Ankyrin-like protein7, 4, G. frateurii, E. coli, S. marcescens, P. putida, P. burhodogranariea, E. hormaechei
    7.80E−1311Malate:quinone oxidoreductase7, 4, G. frateurii, S. marcescens, S. wittichii, P. putida
    8.00E−133Zinc uptake regulation protein ZUR6, 4, G. frateurii, E. coli, S. marcescens, P. putida, P. burhodogranaria, E. hormaechei, 2 Enterococcus strains
    8.80E−131Deoxyribodipyrimidine photolyase7, 4, G. frateurii, E. coli, S. marcescens, S. wittichii, P. putida, E. hormaechei
    1.00E−126Glucose dehydrogenase (PQQ dependent)6, 4, S. marcescens, S. wittichii, P. putida, E. hormaechei
    2.70E−121Hypothetical protein7, 2, E. coli, S. marcescens, P. putida, P. burhodogranariea, E. hormaechei
    2.90E−121Major facilitator superfamily transporter7, 3, G. frateurii, E. coli, S. marcescens, P. putida, P. burhodogranariea, E. hormaechei
    5.20E−121Paraquat-inducible protein B7, 4, E. coli, S. marcescens, S. wittichii, P. putida, P. burhodogranariea, E. hormaechei
    3.40E−114Succinate dehydrogenase iron-sulfur protein7, 3, G. frateurii, E. coli, S. marcescens, S. wittichii, P. putida, P. burhodogranariea, E. hormaechei
    5.00E−111ATP-dependent helicase HrpB7, 4, E. coli, S. marcescens, E. hormaechei
    6.00E−111Hypothetical protein7, 3, E. coli, S. marcescens, B. subtilis, P. putida, P. burhodogranariea, E. hormaechei
    6.10E−111Aminodeoxychorismate lyase7, 4, G. frateurii, E. coli, S. marcescens, S. wittichii, P. putida, P. burhodogranariea, E. hormaechei
    6.70E−1119Flavin mononucleotide reductase YcdH7, 4, G. frateurii, S. marcescens, S. wittichii, P. putida, P. burhodogranariea, E. hormaechei
    7.20E−113Multidrug resistance transporter HlyD7, 4, E. coli, S. marcescens, S. wittichii, P. putida, P. burhodogranariea, E. hormaechei, 2 Enterococcus strains, Dysgonomonas
    8.40E−112NADH-ubiquinone oxidoreductase chain E, FB. subtilis, 2 Streptococcus strains, 16 Lactobacillus strains, 1 Enterococcus sp., Leuconostoc
    1.00E−102Phenylalanine-tRNA ligase subunit beta7, 4, G. frateurii, E. coli, S. marcescens, S. wittichii, P. putida, P. burhodogranariea, E. hormaechei, 1 Enterococcus sp., Dysgonomonas
    1.00E−101Deoxyguanosinetriphosphate triphosphohydrolaseB. subtilis, 2 Streptococcus strains, 16 Lactobacillus strains, Leuconostoc
    1.00E−101Thiamine pyrophosphokinase7, 4, G. frateurii, S. marcescens, P. putida
    1.30E−105Oxidoreductase; alcohol dehydroenase cytochrome c subunit7, 3, E. coli, S. marcescens, S. wittichii, P. putida, P. burhodogranariea, E. hormaechei
    1.60E−101Succinate dehydrogenase cytochrome b subunit7, 4, G. frateurii, S. marcescens, S. wittichii, P. putida, P. burhodogranariea, E. hormaechei, 2 Enterococcus, Dysgonomonas
    1.70E−101Putative metal (Zn) chaperone7, 4, G. frateurii, E. coli, S. marcescens, B. subtilis, P. putida, P. burhodogranariea, E. hormaechei
    1.80E−103Cytochrome o ubiquinol oxidase subunit II, III7, 4, G. frateurii, S. marcescens, B. subtilis, P. putida, P. burhodogranariea, E. hormaechei
    • ↵a For a full list, see Table S2.

  • TABLE 3 

    Significant associations between adult TAG content and phylogenetic distribution groupa

    P valueNo. of COGsNotable annotated genesPDG (no. of Acetobacter strains, no. of Gluconacetobacter strains, other taxon[s] containing COG[s])
    1.93E−0091NADH-dependent oxidoreductase4, 4, G. frateurii, B. subtilis
    2.34E−0071Gamma-glutamyltranspeptidase7, 4, G. frateurii, S. wittichii, B. subtilis, L. malefermentans
    2.41E−0071Dihydrolipoamide dehydrogenase7, 4, G. frateurii, S. wittichii, B. subtilis, L. casei, 2 Enterococcus strains
    3.36E−0074Gluconate 2-dehydrogenase subunit4, 4, G. frateurii
    4.06E−0073Copper efflux ATPase; metallo-dependent_hydrolases7, 4, G. frateurii, B. subtilis
    4.06E−0071MreCAll but Acetobacteraceae family and 1 Enterococcus sp.
    5.43E−0075Cytochrome c oxidase biogenesis; CarD-like transcriptional regulator; nitrogen fixation7, 4, G. frateurii, S. wittichii, B. subtilis
    6.45E−0075Thioredoxin peroxidase (phytoene)4, 4, G. frateurii, S. wittichii
    1.02E−0061Phytoene biosynthesis4, 4, G. frateurii, L. plantarum, B. subtilis
    1.15E−0063MotA3, 4, G. frateurii
    1.30E−00625-Aminolevulinate synthase4, 4, G. frateurii, S. marcescens, S. wittichii, B. subtilis
    1.71E−0061TonB-dependent outer membrane channel4, 3, G. frateurii
    1.73E−0062Multidrug efflux pump acriflavin resistance protein3, 4, G. frateurii
    2.01E−0062Transcriptional regulator3, 4, G. frateurii, S. wittichii
    2.09E−0061Putative hexosyltransferase6, 4, G. frateurii, B. subtilis
    2.38E−0061PEBP family protein3, 4, G. frateurii, S. wittichii
    2.94E−0061Hydroxyacylglutathione2, 4, B. subtilis
    2.94E−0062Cob(II)yrinic acid reductase7, 4, G. frateurii, B. subtilis, P. putida
    3.12E−0061Hypothetical2, 4, G. frateurii
    3.46E−0061Hypothetical5, 4, B. subtilis
    3.59E−0062TPR superfamily; ubiquinol oxidase7, 4, G. frateurii, B. subtilis, S. wittichii, P. putida
    7.27E−0061Putative tRNA modifying enzyme7, 4, G. frateurii, B. subtilis, S. wittichii, D. mossii
    7.98E−0061N-Acetyltransferase11 Lactobacillus strains, 2 Enterococcus strains, 2 Streptococcus strains, S. marcescens, E. coli, E. hormaechei
    8.35E−0061Transcriptional regulator2, 4, G. frateurii
    1.46E−005b2Gluconate 2-dehydrogenase subunits4, 4, G. frateurii, S. marcescens, P. putida
    • ↵a For a full list, see Table S3

    • ↵b Not significant after Bonferroni correction for multiple tests (P < 0.05).

Supplemental Material

  • Figures
  • Tables
  • Additional Files
  • Table S1

    Bacterial loads in monoassociated D. melanogaster. Table S1, DOCX file, 0.1 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Figure S1

    Number of COGs per phylogenetic distribution group (PDG). We determined the number of de novo COGs that contained sequences from exactly the same set of bacterial taxa (a PDG). The number of COGs per PDG is shown on the x axis, with the number of PDGs containing that number of COGs on the y axis (truncated for visualization of with multiple COGs). These data demonstrate that a majority of COGs have unique or nearly unique (shared with just one or a few other COGs) PDGs. Download Figure S1, TIF file, 2.5 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Dataset S1

    Representative FASTA sequences and annotations for each COG. Representative amino acid sequences for each COG were selected using HMMER. Annotations are copied from the representative amino acid sequence annotation. Download Dataset S1, TXT file, 4.7 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Table S2

    Statistical association of PDGs and larval development rate. Taxon abbreviations are from Table 1. Table S2, CSV file, 0.5 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Figure S2

    The extracellular glucose oxidation pathway. This metabolic pathway oxidizes glucose to gluconate via glucose dehydrogenase (GDH) and then to 2-ketogluconate via gluconate dehydrogenase (GnDH). In the process, electrons (e−) are passed first to ubiquinone (Q), then to ubiquinol oxidase (Ubq Ox), and then to cytochrome c oxidase (Cyt-c Ox), which transfers the electrons to oxygen (O2). The synthesis of cytochrome oxidase protein (Sco1) is required for biogenesis of Cyt-c Ox. All proteins reside in the inner membrane (IM) of a Gram-negative bacterium. Multiple pathway components were identified as significantly associated with microbiota-dependent traits. For host TAG level, these included GnDH, Sco1, and an Ubq Ox subunit and for host development time, they included pyrroloquinoline quinone (PQQ) biosynthesis proteins B and C (not in diagram), GDH, and two Cyt-c Ox subunits. Download Figure S2, TIF file, 5 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Table S3

    Statistical association of PDGs and adult fly TAG contents. Taxon abbreviations are from Table 1. Table S3, CSV file, 0.5 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Figure S3

    Growth of recombinant bacterial strains in vitro and in vivo. (A) Proliferation of plasmid-bearing strains of A. tropicalis DmCS_006 and A. pasteurianus 3P3 on the surface of sterile fly food, as assessed by plating a known quantity of cells and determining the number of CFU present after 7 days of incubation at 25°C. Values are medians ± ranges of the results from three experiments, plotted on a logarithmic scale. None of the treatments were significantly different from one another in pairwise Mann-Whitney tests. (B) The abundance of bacteria in monocolonized, gnotobiotic, 5-day-old female flies was determined by homogenization and plating. CFUs are shown on a linear scale, each box delineates the first and third quartiles, the dark line is the median, and the whiskers show the range minus outliers that are shown as open circles. None of the treatments were significantly different from one another in pairwise Mann-Whitney tests. Download Figure S3, TIF file, 4.5 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Table S4

    Analysis of variance in the effect of microbiota composition on diet contents. Table S4, DOCX file, 0.05 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Figure S4

    Gnotobiotic rearing impacts protein content of the diet. (A to C) The nutritional content of fly diet after gnotobiotic rearing from egg to adulthood is shown, with the microbiota treatments indicated along the x axis. Values are means ± standard errors of the results from 3 experiments with 7 to 9 technical replicates each. Significant differences from the results for the control were determined by Dunnet’s test (*, P < 0.05; **, P < 0.01; ***, P < 0.001). Download Figure S4, TIF file, 6.8 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Table S5

    Representation of candidate overexpression genes in sequenced Acetobacter and Gluconacetobacter genomes. Table S5, DOCX file, 0.1 MB.

    Copyright © 2014 Chaston et al.

    This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Additional Files

  • Figures
  • Tables
  • Supplemental Material
  • Supplementary Data

    Supplementary Data

    Files in this Data Supplement:

    • Dataset sd1, TXT - Dataset sd1, TXT
    • Figure sf1, TIF - Figure sf1, TIF
    • Figure sf2, TIF - Figure sf2, TIF
    • Figure sf3, TIF - Figure sf3, TIF
    • Figure sf4, TIF - Figure sf4, TIF
    • Table st1, DOCX - Table st1, DOCX
    • Table st2, CSV - Table st2, CSV
    • Table st3, CSV - Table st3, CSV
    • Table st4, DOCX - Table st4, DOCX
    • Table st5, DOCX - Table st5, DOCX
PreviousNext
Back to top
Download PDF
Citation Tools
Metagenome-Wide Association of Microbial Determinants of Host Phenotype in Drosophila melanogaster
John M. Chaston, Peter D. Newell, Angela E. Douglas
mBio Sep 2014, 5 (5) e01631-14; DOI: 10.1128/mBio.01631-14

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this mBio article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metagenome-Wide Association of Microbial Determinants of Host Phenotype in Drosophila melanogaster
(Your Name) has forwarded a page to you from mBio
(Your Name) thought you would be interested in this article in mBio.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Metagenome-Wide Association of Microbial Determinants of Host Phenotype in Drosophila melanogaster
John M. Chaston, Peter D. Newell, Angela E. Douglas
mBio Sep 2014, 5 (5) e01631-14; DOI: 10.1128/mBio.01631-14
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About mBio
  • Editor in Chief
  • Board of Editors
  • AAM Fellows
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Article Types
  • Ethics
  • Contact Us

Follow #mBio

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2150-7511