Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mBio
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Research Article | Therapeutics and Prevention

Puf4 Mediates Post-transcriptional Regulation of Cell Wall Biosynthesis and Caspofungin Resistance in Cryptococcus neoformans

Murat C. Kalem, Harini Subbiah, Jay Leipheimer, Virginia E. Glazier, John C. Panepinto
J. Andrew Alspaugh, Editor
Murat C. Kalem
aDepartment of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Murat C. Kalem
Harini Subbiah
aDepartment of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jay Leipheimer
aDepartment of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Virginia E. Glazier
bDepartment of Biology, Niagara University, Niagara, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John C. Panepinto
aDepartment of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John C. Panepinto
J. Andrew Alspaugh
Duke University Medical Center
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/mBio.03225-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The human fungal pathogen Cryptococcus neoformans is intrinsically resistant to the echinocandin antifungal drug caspofungin, which targets the β-1,3-glucan synthase encoded by FKS1. Echinocandins have been on the market for 20 years, yet they are the newest class of antifungal drugs. Analysis of a C. neoformans puf4Δ mutant, lacking the pumilio/FBF RNA binding protein family member Puf4, revealed exacerbated caspofungin resistance. In contrast, overexpression of PUF4 resulted in caspofungin sensitivity. The FKS1 mRNA contains three Puf4-binding elements (PBEs) in its 5′ untranslated region. Puf4 binds with specificity to this region of FKS1. The FKS1 mRNA was destabilized in the puf4Δ mutant, and the abundance of the FKS1 mRNA was reduced compared to wild type, suggesting that Puf4 is a positive regulator of FKS1 mRNA stability. In addition to FKS1, the abundance of additional cell wall biosynthesis genes, including chitin synthases (CHS3, CHS4, and CHS6) and deacetylases (CDA1, CDA2, and CDA3) as well as a β-1,6-glucan synthase gene (SKN1), was regulated by Puf4. The use of fluorescent dyes to quantify cell wall components revealed that the puf4Δ mutant had increased chitin content, suggesting a cell wall composition that is less reliant on β-1,3-glucan. Overall, our findings suggest a mechanism by which caspofungin resistance, and more broadly, cell wall biogenesis, is regulated post-transcriptionally by Puf4.

IMPORTANCE Cryptococcus neoformans is an environmental fungus that causes pulmonary and central nervous system infections. It is also responsible for 15% of AIDS-related deaths. A significant contributor to the high morbidity and mortality statistics is the lack of safe and effective antifungal therapies, especially in resource-poor settings. Yet, antifungal drug development has stalled in the pharmaceutical industry. Therefore, it is essential to understand the mechanism by which C. neoformans is resistant to caspofungin to design adjunctive therapies to potentiate the drug’s activity toward this important pathogen.

  • Copyright © 2021 Kalem et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Puf4 Mediates Post-transcriptional Regulation of Cell Wall Biosynthesis and Caspofungin Resistance in Cryptococcus neoformans
Murat C. Kalem, Harini Subbiah, Jay Leipheimer, Virginia E. Glazier, John C. Panepinto
mBio Jan 2021, 12 (1) e03225-20; DOI: 10.1128/mBio.03225-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this mBio article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Puf4 Mediates Post-transcriptional Regulation of Cell Wall Biosynthesis and Caspofungin Resistance in Cryptococcus neoformans
(Your Name) has forwarded a page to you from mBio
(Your Name) thought you would be interested in this article in mBio.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Puf4 Mediates Post-transcriptional Regulation of Cell Wall Biosynthesis and Caspofungin Resistance in Cryptococcus neoformans
Murat C. Kalem, Harini Subbiah, Jay Leipheimer, Virginia E. Glazier, John C. Panepinto
mBio Jan 2021, 12 (1) e03225-20; DOI: 10.1128/mBio.03225-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

antifungal resistance
caspofungin
cell wall
post-transcriptional
RNA-binding proteins

Related Articles

Cited By...

About

  • About mBio
  • Editor in Chief
  • Board of Editors
  • AAM Fellows
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Article Types
  • Ethics
  • Contact Us

Follow #mBio

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2150-7511