Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mBio
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mBio
    • Editor in Chief
    • Board of Editors
    • AAM Fellows
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Research Article | Molecular Biology and Physiology

Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon

Brandon A. Rohnke, Kiara J. Rodríguez Pérez, Beronda L. Montgomery
Caroline S. Harwood, Editor
Brandon A. Rohnke
aDOE—Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
bDepartment of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Brandon A. Rohnke
Kiara J. Rodríguez Pérez
aDOE—Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
cUniversity of Puerto Rico at Arecibo, Arecibo, Puerto Rico
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beronda L. Montgomery
aDOE—Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
bDepartment of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
dDepartment of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Beronda L. Montgomery
Caroline S. Harwood
University of Washington
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/mBio.01052-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Cyanobacteria use a carbon dioxide (CO2)-concentrating mechanism (CCM) that enhances their carbon fixation efficiency and is regulated by many environmental factors that impact photosynthesis, including carbon availability, light levels, and nutrient access. Efforts to connect the regulation of the CCM by these factors to functional effects on carbon assimilation rates have been complicated by the aqueous nature of cyanobacteria. Here, we describe the use of cyanobacteria in a semiwet state on glass fiber filtration discs—cyanobacterial discs—to establish dynamic carbon assimilation behavior using gas exchange analysis. In combination with quantitative PCR (qPCR) and transmission electron microscopy (TEM) analyses, we linked the regulation of CCM components to corresponding carbon assimilation behavior in the freshwater, filamentous cyanobacterium Fremyella diplosiphon. Inorganic carbon (Ci) levels, light quantity, and light quality have all been shown to influence carbon assimilation behavior in F. diplosiphon. Our results suggest a biphasic model of cyanobacterial carbon fixation. While behavior at low levels of CO2 is driven mainly by the Ci uptake ability of the cyanobacterium, at higher CO2 levels, carbon assimilation behavior is multifaceted and depends on Ci availability, carboxysome morphology, linear electron flow, and cell shape. Carbon response curves (CRCs) generated via gas exchange analysis enable rapid examination of CO2 assimilation behavior in cyanobacteria and can be used for cells grown under distinct conditions to provide insight into how CO2 assimilation correlates with the regulation of critical cellular functions, such as the environmental control of the CCM and downstream photosynthetic capacity.

IMPORTANCE Environmental regulation of photosynthesis in cyanobacteria enhances organismal fitness, light capture, and associated carbon fixation under dynamic conditions. Concentration of carbon dioxide (CO2) near the carbon-fixing enzyme RubisCO occurs via the CO2-concentrating mechanism (CCM). The CCM is also tuned in response to carbon availability, light quality or levels, or nutrient access—cues that also impact photosynthesis. We adapted dynamic gas exchange methods generally used with plants to investigate environmental regulation of the CCM and carbon fixation capacity using glass fiber-filtered cells of the cyanobacterium Fremyella diplosiphon. We describe a breakthrough in measuring real-time carbon uptake and associated assimilation capacity for cells grown in distinct conditions (i.e., light quality, light quantity, or carbon status). These measurements demonstrate that the CCM modulates carbon uptake and assimilation under low-Ci conditions and that light-dependent regulation of pigmentation, cell shape, and downstream stages of carbon fixation are critical for tuning carbon uptake and assimilation.

FOOTNOTES

    • Received 24 April 2020
    • Accepted 29 April 2020
    • Published 26 May 2020
  • Copyright © 2020 Rohnke et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon
Brandon A. Rohnke, Kiara J. Rodríguez Pérez, Beronda L. Montgomery
mBio May 2020, 11 (3) e01052-20; DOI: 10.1128/mBio.01052-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this mBio article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon
(Your Name) has forwarded a page to you from mBio
(Your Name) thought you would be interested in this article in mBio.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon
Brandon A. Rohnke, Kiara J. Rodríguez Pérez, Beronda L. Montgomery
mBio May 2020, 11 (3) e01052-20; DOI: 10.1128/mBio.01052-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

carbon dioxide assimilation
carbon dioxide concentration mechanism
carbon dioxide fixation
carboxysome
cyanobacteria
gas exchange

Related Articles

Cited By...

About

  • About mBio
  • Editor in Chief
  • Board of Editors
  • AAM Fellows
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Article Types
  • Ethics
  • Contact Us

Follow #mBio

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2150-7511